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Preface
This	book	is	a	practical	guide	to	data	cleaning,	broadly	defined	as	all	tasks
necessary	to	prepare	data	for	analysis.	It	is	organized	by	the	tasks	usually
completed	during	the	data	cleaning	process:	importing	data,	viewing	data
diagnostically,	identifying	outliers	and	unexpected	values,	imputing	values,
tidying	data,	and	so	on.	Each	recipe	walks	the	reader	from	raw	data	through	the
completion	of	a	specific	data	cleaning	task.

There	are	already	a	number	of	very	good	pandas	books.	Unsurprisingly,	there	is
some	overlap	between	those	texts	and	this	one.	However,	the	emphasis	here	is
different.	I	focus	as	much	on	the	why	as	on	the	how	in	this	book.

Since	pandas	is	still	relatively	new,	the	lessons	I	have	learned	about	cleaning
data	have	been	shaped	by	my	experiences	with	other	tools.	Before	settling	into
my	current	work	routine	with	Python	and	R	about	8	years	ago,	I	relied	mostly	on
C#	and	T-SQL	in	the	early	2000s,	SAS	and	Stata	in	the	90s,	and	FORTRAN	and
Pascal	in	the	80s.	Most	readers	of	this	text	probably	have	experience	with	a
variety	of	data	cleaning	and	analysis	tools.	In	many	ways	the	specific	tool	is	less
significant	than	the	data	preparation	task	and	the	attributes	of	the	data.	I	would
have	covered	pretty	much	the	same	topics	if	I	had	been	asked	to	write	The	SAS
Data	Cleaning	Cookbook	or	The	R	Data	Cleaning	Cookbook.	I	just	take	a
Python/pandas	specific	approach	to	the	same	data	cleaning	challenges	that
analysts	have	faced	for	decades.

I	start	each	chapter	with	how	to	think	about	the	particular	data	cleaning	task	at
hand	before	discussing	how	to	approach	it	with	a	tool	from	the	Python
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ecosystem	-	pandas,	NumPy,	matplotlib,	SciPy,	and	so	on.	This	is	reinforced	in
each	recipe	by	a	discussion	of	the	implications	of	what	we	are	uncovering	in	the
data.	I	try	to	connect	tool	to	purpose.	For	example,	concepts	like	skew	and
kurtosis	matter	as	much	for	handling	outliers	as	does	knowing	how	to	update
pandas	series	values.
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Who	this 	book	 is 	 for
This	book	is	for	anyone	looking	for	ways	to	handle	messy,	duplicate,	and	poor
data	using	different	Python	tools	and	techniques.	The	book	takes	a	recipe-based
approach	to	help	you	to	learn	how	to	clean	and	manage	data.	Working
knowledge	of	Python	programming	is	all	you	need	to	get	the	most	out	of	the
book.
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What	 this 	book	covers
Chapter	1,	Anticipating	Data	Cleaning	Issues	when	Importing	Tabular	Data	into
pandas,	explores	tools	for	loading	CSV	files,	Excel	files,	relational	database
tables,	SAS,	SPSS,	and	Stata	files,	and	R	files	into	pandas	DataFrames.

Chapter	2,	Anticipating	Data	Cleaning	Issues	when	Importing	HTML	and	JSON
into	pandas,	discusses	techniques	for	reading	and	normalizing	JSON	data,	and
for	web	scraping.

Chapter	3,	Taking	the	Measure	of	Your	Data,	introduces	common	techniques	for
navigating	around	a	DataFrame,	selecting	columns	and	rows,	and	generating
summary	statistics.

Chapter	4,	Identifying	Missing	Values	and	Outliers	in	Subsets	of	Data,	explores
a	wide	range	of	strategies	to	identify	missing	values	and	outliers	across	a	whole
DataFrame	and	by	selected	groups.

Chapter	5,	Using	Visualizations	for	the	Identification	of	Unexpected	Values,
demonstrates	the	use	of	matplotlib	and	seaborn	tools	to	visualize	how	key
variables	are	distributed,	including	with	histograms,	boxplots,	scatter	plots,	line
plots,	and	violin	plots.

Chapter	6,	Cleaning	and	Exploring	Data	with	Series	Operations,	discusses
updating	pandas	series	with	scalars,	arithmetic	operations,	and	conditional
statements	based	on	the	values	of	one	or	more	series.
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Chapter	7,	Fixing	Messy	Data	when	Aggregating,	demonstrates	multiple
approaches	to	aggregating	data	by	group,	and	discusses	when	to	choose	one
approach	over	the	others.

Chapter	8,	Addressing	Data	Issues	when	Combining	DataFrames,	examines
different	strategies	for	concatenating	and	merging	data,	and	how	to	anticipate
common	data	challenges	when	combining	data.

Chapter	9,	Tidying	and	Reshaping	Data,	introduces	several	strategies	for	de-
duplicating,	stacking,	melting,	and	pivoting	data.

Chapter	10,	User-Defined	Functions	and	Classes	to	Automate	Data	Cleaning,
examines	how	to	turn	many	of	the	techniques	from	the	first	nine	chapters	into
reusable	code.

To	get 	 the	most 	out 	of 	 this 	book
Working	knowledge	of	Python	programming	is	all	you	need	to	get	the	most	out
of	this	book.	System	requirements	are	mentioned	in	the	following	table.
Alternatively,	you	can	use	Google	Colab	as	well.

If	you	are	using	the	digital	version	of	this	book,	we	advise	you	to	type	the
code	yourself	or	access	the	code	via	the	GitHub	repository	(link	available	in
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the	next	section).	Doing	so	will	help	you	avoid	any	potential	errors	related	to
the	copying	and	pasting	of	code.

Download	the	example	code	files
You	can	download	the	example	code	files	for	this	book	from	GitHub	at
https://github.com/PacktPublishing/Python-Data-Cleaning-Cookbook.	In	case
there's	an	update	to	the	code,	it	will	be	updated	on	the	existing	GitHub
repository.

We	also	have	other	code	bundles	from	our	rich	catalog	of	books	and	videos
available	at	https://github.com/PacktPublishing/.	Check	them	out!

Download	 the	color 	 images
We	also	provide	a	PDF	file	that	has	color	images	of	the	screenshots/diagrams
used	in	this	book.	You	can	download	it	here:	https://static.packt-
cdn.com/downloads/9781800565661_ColorImages.pdf.

Convent ions	used
There	are	a	number	of	text	conventions	used	throughout	this	book.

Code	in	text:	Indicates	code	words	in	text,	database	table	names,
folder	names,	filenames,	file	extensions,	pathnames,	dummy	URLs,	user	input,

and	Twitter	handles.	Here	is	an	example:	"Define	a	getcases	function
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that	returns	a	series	for	total_cases_pm	for	the	countries	of	a
region."

A	block	of	code	is	set	as	follows:

>>>	import	pandas	as	pd

>>>	import	matplotlib.pyplot	as	plt

>>>	import	statsmodels.api	as	sm

Any	command-line	input	or	output	is	written	as	follows:

$	pip	install	pyarrow

Bold:	Indicates	a	new	term,	an	important	word,	or	words	that	you	see	onscreen.
For	example,	words	in	menus	or	dialog	boxes	appear	in	the	text	like	this.	Here	is
an	example:	"We	will	work	with	cumulative	data	on	coronavirus	cases	and
deaths	by	country,	and	the	National	Longitudinal	Survey	(NLS)	data."

TIPS	OR	IMPORTANT	NOTES
Appear	like	this.

Sect ions
In	this	book,	you	will	find	several	headings	that	appear	frequently	(Getting
ready,	How	to	do	it...,	How	it	works...,	There's	more...,	and	See	also).

To	give	clear	instructions	on	how	to	complete	a	recipe,	use	these	sections	as
follows:
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Getting	ready
This	section	tells	you	what	to	expect	in	the	recipe	and	describes	how	to	set	up
any	software	or	any	preliminary	settings	required	for	the	recipe.

How	to	do	it…
This	section	contains	the	steps	required	to	follow	the	recipe.

How	it	works…
This	section	usually	consists	of	a	detailed	explanation	of	what	happened	in	the
previous	section.

There's	more…
This	section	consists	of	additional	information	about	the	recipe	in	order	to	make
you	more	knowledgeable	about	the	recipe.

See	also
This	section	provides	helpful	links	to	other	useful	information	for	the	recipe.

Get	 in 	 touch
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Feedback	from	our	readers	is	always	welcome.

General	feedback:	If	you	have	questions	about	any	aspect	of	this	book,	mention
the	book	title	in	the	subject	of	your	message	and	email	us	at
customercare@packtpub.com.

Errata:	Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our
content,	mistakes	do	happen.	If	you	have	found	a	mistake	in	this	book,	we	would
be	grateful	if	you	would	report	this	to	us.	Please	visit
www.packtpub.com/support/errata,	selecting	your	book,	clicking	on	the	Errata
Submission	Form	link,	and	entering	the	details.

Piracy:	If	you	come	across	any	illegal	copies	of	our	works	in	any	form	on	the
Internet,	we	would	be	grateful	if	you	would	provide	us	with	the	location	address
or	website	name.	Please	contact	us	at	copyright@packt.com	with	a	link	to	the
material.

If	you	are	interested	in	becoming	an	author:	If	there	is	a	topic	that	you	have
expertise	in	and	you	are	interested	in	either	writing	or	contributing	to	a	book,
please	visit	authors.packtpub.com.

Reviews
Please	leave	a	review.	Once	you	have	read	and	used	this	book,	why	not	leave	a
review	on	the	site	that	you	purchased	it	from?	Potential	readers	can	then	see	and
use	your	unbiased	opinion	to	make	purchase	decisions,	we	at	Packt	can
understand	what	you	think	about	our	products,	and	our	authors	can	see	your
feedback	on	their	book.	Thank	you!

Telegram Channel @nettrain

mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com


For	more	information	about	Packt,	please	visit	packt.com.
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Chapter 	1: 	Anticipat ing	Data
Cleaning	Issues 	when	Import ing
Tabular 	Data 	 into	pandas
Scientific	distributions	of	Python	(Anaconda,	WinPython,	Canopy,	and	so	on)
provide	analysts	with	an	impressive	range	of	data	manipulation,	exploration,	and
visualization	tools.	One	important	tool	is	pandas.	Developed	by	Wes	McKinney
in	2008,	but	really	gaining	in	popularity	after	2012,	pandas	is	now	an	essential
library	for	data	analysis	in	Python.	We	work	with	pandas	extensively	in	this

book,	along	with	popular	packages	such	as	numpy,	matplotlib,	and

scipy.

A	key	pandas	object	is	the	data	frame,	which	represents	data	as	a	tabular
structure,	with	rows	and	columns.	In	this	way,	it	is	similar	to	the	other	data	stores
we	discuss	in	this	chapter.	However,	a	pandas	data	frame	also	has	indexing
functionality	that	makes	selecting,	combining,	and	transforming	data	relatively
straightforward,	as	the	recipes	in	this	book	will	demonstrate.

Before	we	can	make	use	of	this	great	functionality,	we	have	to	get	our	data	into
pandas.	Data	comes	to	us	in	a	wide	variety	of	formats:	as	CSV	or	Excel	files,	as
tables	from	SQL	databases,	from	statistical	analysis	packages	such	as	SPSS,
Stata,	SAS,	or	R,	from	non-tabular	sources	such	as	JSON,	and	from	web	pages.

We	examine	tools	for	importing	tabular	data	in	this	recipe.	Specifically,	we	cover
the	following	topics:

Importing	CSV	files
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Importing	Excel	files

Importing	data	from	SQL	databases

Importing	SPSS,	Stata,	and	SAS	data

Importing	R	data

Persisting	tabular	data

Technical 	 requirements
The	code	and	notebooks	for	this	chapter	are	available	on	GitHub	at
https://github.com/PacktPublishing/Python-Data-Cleaning-Cookbook

Import ing	CSV	f i les

The	read_csv	method	of	the	pandas	library	can	be	used	to	read	a
file	with	comma	separated	values	(CSV)	and	load	it	into	memory	as	a	pandas
data	frame.	In	this	recipe,	we	read	a	CSV	file	and	address	some	common	issues:
creating	column	names	that	make	sense	to	us,	parsing	dates,	and	dropping	rows
with	critical	missing	data.

Raw	data	is	often	stored	as	CSV	files.	These	files	have	a	carriage	return	at	the
end	of	each	line	of	data	to	demarcate	a	row,	and	a	comma	between	each	data
value	to	delineate	columns.	Something	other	than	a	comma	can	be	used	as	the
delimiter,	such	as	a	tab.	Quotation	marks	may	be	placed	around	values,	which
can	be	helpful	when	the	delimiter	occurs	naturally	within	certain	values,	which
sometimes	happens	with	commas.
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All	data	in	a	CSV	file	are	characters,	regardless	of	the	logical	data	type.	This	is
why	it	is	easy	to	view	a	CSV	file,	presuming	it	is	not	too	large,	in	a	text	editor.

The	pandas	read_csv	method	will	make	an	educated	guess	about	the	data
type	of	each	column,	but	you	will	need	to	help	it	along	to	ensure	that	these
guesses	are	on	the	mark.

Getting	ready
Create	a	folder	for	this	chapter	and	create	a	new	Python	script	or	Jupyter
Notebook	file	in	that	folder.	Create	a	data	subfolder	and	place	the

landtempssample.csv	file	in	that	subfolder.	Alternatively,	you
could	retrieve	all	of	the	files	from	the	GitHub	repository.	Here	is	a	code	sample
from	the	beginning	of	the	CSV	file:

locationid,year,month,temp,latitude,longitude,stnelev,station,countryid,country

USS0010K01S,2000,4,5.27,39.9,-110.75,2773.7,INDIAN_CANYON,US,United

States

CI000085406,1940,5,18.04,-18.35,-70.333,58.0,ARICA,CI,Chile

USC00036376,2013,12,6.22,34.3703,-91.1242,61.0,SAINT_CHARLES,US,United

States

ASN00024002,1963,2,22.93,-34.2833,140.6,65.5,BERRI_IRRIGATION,AS,Australia

ASN00028007,2001,11,,-14.7803,143.5036,79.4,MUSGRAVE,AS,Australia

NOTE
This	dataset,	taken	from	the	Global	Historical	Climatology	Network	integrated
database,	is	made	available	for	public	use	by	the	United	States	National
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Oceanic	and	Atmospheric	Administration	at	https://www.ncdc.noaa.gov/data-
access/land-based-station-data/land-based-datasets/global-historical-
climatology-network-monthly-version-4.	This	is	just	a	100,000-row	sample	of	the
full	dataset,	which	is	also	available	in	the	repository.

How	to	do	it…
We	will	import	a	CSV	file	into	pandas,	taking	advantage	of	some	very	useful

read_csv	options:

1.	 Import	the	pandas	library	and	set	up	the	environment	to	make	viewing
the	output	easier:

>>>	import	pandas	as	pd

>>>	pd.options.display.float_format	=

'{:,.2f}'.format

>>>	pd.set_option('display.width',

85)

>>>

pd.set_option('display.max_columns',

8)

2.	 Read	the	data	file,	set	new	names	for	the	headings,	and	parse	the	date	column.

Pass	an	argument	of	1	to	the	skiprows	parameter	to	skip	the	first	row,

pass	a	list	of	columns	to	parse_dates	to	create	a	pandas	datetime

column	from	those	columns,	and	set	low_memory	to	False	to
reduce	the	usage	of	memory	during	the	import	process:
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>>>	landtemps	=

pd.read_csv('data/landtempssample.csv',

...					names=

['stationid','year','month','avgtemp','latitude',

...							'longitude','elevation','station','countryid','country'],

...					skiprows=1,

...					parse_dates=

[['month','year']],

...					low_memory=False)

>>>	type(landtemps)

<class	'pandas.core.frame.DataFrame'>

3.	 Get	a	quick	glimpse	of	the	data.

View	the	first	few	rows.	Show	the	data	type	for	all	columns,	as	well	as	the
number	of	rows	and	columns:

>>>	landtemps.head(7)

		month_year				stationid		...		countryid								country

0	2000-04-

01		USS0010K01S		...									US		United

States

1	1940-05-

01		CI000085406		...									CI										Chile

2	2013-12-

01		USC00036376		...									US		United

States
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3	1963-02-

01		ASN00024002		...									AS						Australia

4	2001-11-

01		ASN00028007		...									AS						Australia

5	1991-04-

01		USW00024151		...									US		United

States

6	1993-12-

01		RSM00022641		...									RS									Russia

[7	rows	x	9	columns]

>>>	landtemps.dtypes

month_year				datetime64[ns]

stationid													object

avgtemp														float64

latitude													float64

longitude												float64

elevation												float64

station															object

countryid													object

country															object

dtype:	object

>>>	landtemps.shape

(100000,	9)
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4.	 Give	the	date	column	a	better	name	and	view	the	summary	statistics	for
average	monthly	temperature:

>>>	landtemps.rename(columns=

{'month_year':'measuredate'},

inplace=True)

>>>	landtemps.dtypes

measuredate				datetime64[ns]

stationid														object

avgtemp															float64

latitude														float64

longitude													float64

elevation													float64

station																object

countryid														object

country																object

dtype:	object

>>>	landtemps.avgtemp.describe()

count			85,554.00

mean								10.92

std									11.52

min								-70.70

25%										3.46

50%									12.22
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75%									19.57

max									39.95

Name:	avgtemp,	dtype:	float64

5.	 Look	for	missing	values	for	each	column.

Use	isnull,	which	returns	True	for	each	value	that	is	missing	for

each	column,	and	False	when	not	missing.	Chain	this	with	sum	to
count	the	missings	for	each	column.	(When	working	with	Boolean	values,

sum	treats	True	as	1	and	False	as	0.	I	will	discuss	method
chaining	in	the	There's	more...	section	of	this	recipe):

>>>	landtemps.isnull().sum()

measuredate								0

stationid										0

avgtemp								14446

latitude											0

longitude										0

elevation										0

station												0

countryid										0

country												5

dtype:	int64

6.	 Remove	rows	with	missing	data	for	avgtemp.

Use	the	subset	parameter	to	tell	dropna	to	drop	rows	where

avgtemp	is	missing.	Set	inplace	to	True.	Leaving
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inplace	at	its	default	value	of	False	would	display	the	data	frame,

but	the	changes	we	have	made	would	not	be	retained.	Use	the	shape
attribute	of	the	data	frame	to	get	the	number	of	rows	and	columns:

>>>	landtemps.dropna(subset=

['avgtemp'],	inplace=True)

>>>	landtemps.shape

(85554,	9)

That's	it!	Importing	CSV	files	into	pandas	is	as	simple	as	that.

How	it	works...
Almost	all	of	the	recipes	in	this	book	use	the	pandas	library.	We	refer	to	it

as	pd	to	make	it	easier	to	reference	later.	This	is	customary.	We	also	use

float_format	to	display	float	values	in	a	readable	way	and

set_option	to	make	the	terminal	output	wide	enough	to	accommodate
the	number	of	variables.

Much	of	the	work	is	done	by	the	first	line	in	step	2.	We	use	read_csv	to

load	a	pandas	data	frame	in	memory	and	call	it	landtemps.	In	addition	to

passing	a	filename,	we	set	the	names	parameter	to	a	list	of	our	preferred

column	headings.	We	also	tell	read_csv	to	skip	the	first	row,	by	setting

skiprows	to	1,	since	the	original	column	headings	are	in	the	first	row	of

the	CSV	file.	If	we	do	not	tell	it	to	skip	the	first	row,	read_csv	will	treat
the	header	row	in	the	file	as	actual	data.
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read_csv	also	solves	a	date	conversion	issue	for	us.	We	use	the

parse_dates	parameter	to	ask	it	to	convert	the	month	and	year
columns	to	a	date	value.

Step	3	runs	through	a	few	standard	data	checks.	We	use	head(7)	to	print

out	all	columns	for	the	first	7	rows.	We	use	the	dtypes	attribute	of	the	data
frame	to	show	the	data	type	of	all	columns.	Each	column	has	the	expected	data
type.	In	pandas,	character	data	has	the	object	data	type,	a	data	type	that	allows

for	mixed	values.	shape	returns	a	tuple,	whose	first	element	is	the	number	of
rows	in	the	data	frame	(100,000	in	this	case)	and	whose	second	element	is	the
number	of	columns	(9).

When	we	used	read_csv	to	parse	the	month	and	year	columns,	it

gave	the	resulting	column	the	name	month_year.	We	use	the

rename	method	in	step	4	to	give	that	column	a	better	name.	We	need	to

specify	inplace=True	to	replace	the	old	column	name	with	the	new

column	name	in	memory.	The	describe	method	provides	summary

statistics	on	the	avgtemp	column.

Notice	that	the	count	for	avgtemp	indicates	that	there	are	85,554	rows	that

have	valid	values	for	avgtemp.	This	is	out	of	100,000	rows	for	the	whole

data	frame,	as	provided	by	the	shape	attribute.	The	listing	of	missing	values

for	each	column	in	step	5	(landtemps.isnull().sum())
confirms	this:	100,000	–	85,554	=	14,446.

Step	6	drops	all	rows	where	avgtemp	is	NaN.	(The	NaN	value,	not	a

number,	is	the	pandas	representation	of	missing	values.)	subset	is	used	to

indicate	which	column	to	check	for	missings.	The	shape	attribute	for
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landtemps	now	indicates	that	there	are	85,554	rows,	which	is	what	we

would	expect	given	the	previous	count	from	describe.

There's	more...
If	the	file	you	are	reading	uses	a	delimiter	other	than	a	comma,	such	as	a	tab,	this

can	be	specified	in	the	sep	parameter	of	read_csv.	When	creating	the
pandas	data	frame,	an	index	was	also	created.	The	numbers	to	the	far	left	of	the

output	when	head	and	sample	were	run	are	index	values.	Any	number

of	rows	can	be	specified	for	head	or	sample.	The	default	value	is	5.

Setting	low_memory	to	False	causes	read_csv	to	parse	data
in	chunks.	This	is	easier	on	systems	with	lower	memory	when	working	with
larger	files.	However,	the	full	data	frame	will	still	be	loaded	into	memory	once

read_csv	completes	successfully.

The	landtemps.isnull().sum()	statement	is	an	example

of	chaining	methods.	First,	isnull	returns	a	data	frame	of	True	and

False	values,	resulting	from	testing	whether	each	column	value	is	null.

sum	takes	that	data	frame	and	sums	the	True	values	for	each	column,

interpreting	the	True	values	as	1	and	the	False	values	as	0.	We	would
have	obtained	the	same	result	if	we	had	used	the	following	two	steps:

>>>	checknull	=	landtemps.isnull()

>>>	checknull.sum()

There	is	no	hard	and	fast	rule	for	when	to	chain	methods	and	when	not	to.	I	find
it	helpful	to	chain	when	I	really	think	of	something	I	am	doing	as	being	a	single
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step,	but	only	two	or	more	steps,	mechanically	speaking.	Chaining	also	has	the
side	benefit	of	not	creating	extra	objects	that	I	might	not	need.

The	dataset	used	in	this	recipe	is	just	a	sample	from	the	full	land	temperatures
database	with	almost	17	million	records.	You	can	run	the	larger	file	if	your
machine	can	handle	it,	with	the	following	code:

>>>	landtemps	=

pd.read_csv('data/landtemps.zip',

compression='zip',

...					names=

['stationid','year','month','avgtemp','latitude',

...							'longitude','elevation','station','countryid','country'],

...					skiprows=1,

...					parse_dates=

[['month','year']],

...					low_memory=False)

read_csv	can	read	a	compressed	ZIP	file.	We	get	it	to	do	this	by	passing
the	name	of	the	ZIP	file	and	the	type	of	compression.

See	also
Subsequent	recipes	in	this	chapter,	and	in	other	chapters,	set	indexes	to	improve
navigation	over	rows	and	merging.

A	significant	amount	of	reshaping	of	the	Global	Historical	Climatology	Network
raw	data	was	done	before	using	it	in	this	recipe.	We	demonstrate	this	in	Chapter

Telegram Channel @nettrain



8,	Addressing	Data	Issues	when	Combining	DataFrames.	That	recipe	also	shows
how	to	read	a	text	file	that	is	not	delimited,	one	that	is	fixed,	by	using

read_fwf.

Import ing	Excel 	 f i les

The	read_excel	method	of	the	pandas	library	can	be	used	to
import	data	from	an	Excel	file	and	load	it	into	memory	as	a	pandas	data	frame.
In	this	recipe,	we	import	an	Excel	file	and	handle	some	common	issues	when
working	with	Excel	files:	extraneous	header	and	footer	information,	selecting
specific	columns,	removing	rows	with	no	data,	and	connecting	to	particular
sheets.

Despite	the	tabular	structure	of	Excel,	which	invites	the	organization	of	data	into
rows	and	columns,	spreadsheets	are	not	datasets	and	do	not	require	people	to
store	data	in	that	way.	Even	when	some	data	conforms	to	those	expectations,
there	is	often	additional	information	in	rows	or	columns	before	or	after	the	data
to	be	imported.	Data	types	are	not	always	as	clear	as	they	are	to	the	person	who
created	the	spreadsheet.	This	will	be	all	too	familiar	to	anyone	who	has	ever
battled	with	importing	leading	zeros.	Moreover,	Excel	does	not	insist	that	all
data	in	a	column	be	of	the	same	type,	or	that	column	headings	be	appropriate	for
use	with	a	programming	language	such	as	Python.

Fortunately,	read_excel	has	a	number	of	options	for	handling
messiness	in	Excel	data.	These	options	make	it	relatively	easy	to	skip	rows	and
select	particular	columns,	and	to	pull	data	from	a	particular	sheet	or	sheets.
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Getting	ready
You	can	download	the	GDPpercapita.xlsx	file,	as	well	as	the
code	for	this	recipe,	from	the	GitHub	repository	for	this	book.	The	code	assumes
that	the	Excel	file	is	in	a	data	subfolder.	Here	is	a	view	of	the	beginning	of	the
file:

Figure	1.1	–	View	of	the	dataset

And	here	is	a	view	of	the	end	of	the	file:

Figure	1.2	–	View	of	the	dataset

NOTE
This	dataset,	from	the	Organisation	for	Economic	Co-operation	and
Development,	is	available	for	public	use	at	https://stats.oecd.org/.

How	to	do	it…
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We	import	an	Excel	file	into	pandas	and	do	some	initial	data	cleaning:

1.	 Import	the	pandas	library:

>>>	import	pandas	as	pd

2.	 Read	the	Excel	per	capita	GDP	data.

Select	the	sheet	with	the	data	we	need,	but	skip	the	columns	and	rows	that	we

do	not	want.	Use	the	sheet_name	parameter	to	specify	the	sheet.	Set

skiprows	to	4	and	skipfooter	to	1	to	skip	the	first	four
rows	(the	first	row	is	hidden)	and	the	last	row.	We	provide	values	for

usecols	to	get	data	from	column	A	and	columns	C	through	T	(column

B	is	blank).	Use	head	to	view	the	first	few	rows:

>>>	percapitaGDP	=

pd.read_excel("data/GDPpercapita.xlsx",

...				sheet_name="OECD.Stat	export",

...				skiprows=4,

...				skipfooter=1,

...				usecols="A,C:T")

>>>	percapitaGDP.head()

																									Year			2001		...			2017			2018

0										Metropolitan

areas				NaN		...				NaN				NaN

1														AUS:

Australia					..		...					..					..

2							AUS01:	Greater

Sydney		43313		...		50578		49860

Telegram Channel @nettrain



3				AUS02:	Greater

Melbourne		40125		...		43025		42674

4					AUS03:	Greater

Brisbane		37580		...		46876		46640

[5	rows	x	19	columns]

3.	 Use	the	info	method	of	the	data	frame	to	view	data	types	and	the	non-

null	count:

>>>	percapitaGDP.info()

<class	'pandas.core.frame.DataFrame'>

RangeIndex:	702	entries,	0	to	701

Data	columns	(total	19	columns):

#			Column		Non-Null	Count		Dtype

---		------		--------------		-----

0			Year				702	non-null				object

1			2001				701	non-null				object

2			2002				701	non-null				object

3			2003				701	non-null				object

4			2004				701	non-null				object

5			2005				701	non-null				object

6			2006				701	non-null				object

7			2007				701	non-null				object

8			2008				701	non-null				object

9			2009				701	non-null				object
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10		2010				701	non-null				object

11		2011				701	non-null				object

12		2012				701	non-null				object

13		2013				701	non-null				object

14		2014				701	non-null				object

15		2015				701	non-null				object

16		2016				701	non-null				object

17		2017				701	non-null				object

18		2018				701	non-null				object

dtypes:	object(19)

memory	usage:	104.3+	KB

4.	 Rename	the	Year	column	to	metro	and	remove	the	leading	spaces.

Give	an	appropriate	name	to	the	metropolitan	area	column.	There	are	extra
spaces	before	the	metro	values	in	some	cases,	and	extra	spaces	after	the	metro

values	in	others.	We	can	test	for	leading	spaces	with	startswith('

')	and	then	use	any	to	establish	whether	there	are	one	or	more	occasions

when	the	first	character	is	blank.	We	can	use	endswith('	')	to

examine	trailing	spaces.	We	use	strip	to	remove	both	leading	and
trailing	spaces:

>>>	percapitaGDP.rename(columns=

{'Year':'metro'},	inplace=True)

>>>

percapitaGDP.metro.str.startswith('

').any()
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True

>>>	percapitaGDP.metro.str.endswith('

').any()

True

>>>	percapitaGDP.metro	=

percapitaGDP.metro.str.strip()

5.	 Convert	the	data	columns	to	numeric.

Iterate	over	all	of	the	GDP	year	columns	(2001-2018)	and	convert	the	data

type	from	object	to	float.	Coerce	the	conversion	even	when	there

is	character	data	–	the	..	in	this	example.	We	want	character	values	in	those
columns	to	become	missing,	which	is	what	happens.	Rename	the	year
columns	to	better	reflect	the	data	in	those	columns:

>>>	for	col	in

percapitaGDP.columns[1:]:

...			percapitaGDP[col]	=

pd.to_numeric(percapitaGDP[col],

errors='coerce')

...			percapitaGDP.rename(columns=

{col:'pcGDP'+col},

inplace=True)

...

>>>	percapitaGDP.head()

																						metro		pcGDP2001		...		pcGDP2017		pcGDP2018
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0								Metropolitan

areas								nan		...								nan								nan

1												AUS:

Australia								nan		...								nan								nan

2					AUS01:	Greater

Sydney						43313		...						50578						49860

3		AUS02:	Greater

Melbourne						40125		...						43025						42674

4			AUS03:	Greater

Brisbane						37580		...						46876						46640

>>>	percapitaGDP.dtypes

metro									object

pcGDP2001				float64

pcGDP2002				float64

abbreviated	to	save	space

pcGDP2017				float64

pcGDP2018				float64

dtype:	object

6.	 Use	the	describe	method	to	generate	summary	statistics	for	all
numeric	data	in	the	data	frame:

>>>	percapitaGDP.describe()

							pcGDP2001		pcGDP2002		...		pcGDP2017		pcGDP2018

count								424								440		...								445								441

mean							41264						41015		...						47489						48033
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std								11878						12537		...						15464						15720

min								10988						11435		...							2745							2832

25%								33139						32636		...						37316						37908

50%								39544						39684		...						45385						46057

75%								47972						48611		...						56023						56638

max								91488						93566		...					122242					127468

[8	rows	x	18	columns]

7.	 Remove	rows	where	all	of	the	per	capita	GDP	values	are	missing.

Use	the	subset	parameter	of	dropna	to	inspect	all	columns,	starting

with	the	second	column	(it	is	zero-based)	through	the	last	column.	Use	how
to	specify	that	we	want	to	drop	rows	only	if	all	of	the	columns	specified	in

subset	are	missing.	Use	shape	to	show	the	number	of	rows	and
columns	in	the	resulting	data	frame:

>>>

percapitaGDP.dropna(subset=percapitaGDP.columns[1:],

how="all",	inplace=True)

>>>	percapitaGDP.describe()

							pcGDP2001		pcGDP2002		...		pcGDP2017		pcGDP2018

count								424								440		...								445								441

mean							41264						41015		...						47489						48033

std								11878						12537		...						15464						15720

min								10988						11435		...							2745							2832

25%								33139						32636		...						37316						37908
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50%								39544						39684		...						45385						46057

75%								47972						48611		...						56023						56638

max								91488						93566		...					122242					127468

[8	rows	x	18	columns]

>>>	percapitaGDP.head()

																						metro		pcGDP2001		...		pcGDP2017		pcGDP2018

2					AUS01:	Greater

Sydney						43313		...						50578						49860

3		AUS02:	Greater

Melbourne						40125		...						43025						42674

4			AUS03:	Greater

Brisbane						37580		...						46876						46640

5						AUS04:	Greater

Perth						45713		...						66424						70390

6			AUS05:	Greater

Adelaide						36505		...						40115						39924

[5	rows	x	19	columns]

>>>	percapitaGDP.shape

(480,	19)

8.	 Set	the	index	for	the	data	frame	using	the	metropolitan	area	column.

Confirm	that	there	are	480	valid	values	for	metro	and	that	there	are	480
unique	values,	before	setting	the	index:

>>>	percapitaGDP.metro.count()
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480

>>>	percapitaGDP.metro.nunique()

480

>>>	percapitaGDP.set_index('metro',

inplace=True)

>>>	percapitaGDP.head()

																					pcGDP2001		pcGDP2002		...		pcGDP2017		pcGDP2018

metro																																											...																						

AUS01:	Greater

Sydney				43313						44008		...						50578						49860

AUS02:	Greater	Melbourne

40125						40894		...						43025						42674

AUS03:	Greater

Brisbane		37580						37564		...						46876						46640

AUS04:	Greater

Perth					45713						47371		...						66424						70390

AUS05:	Greater

Adelaide		36505						37194		...						40115						39924

[5	rows	x	18	columns]

>>>	percapitaGDP.loc['AUS02:	Greater

Melbourne']

pcGDP2001			40125

pcGDP2002			40894

...
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pcGDP2017			43025

pcGDP2018			42674

Name:	AUS02:	Greater	Melbourne,

dtype:	float64

We	have	now	imported	the	Excel	data	into	a	pandas	data	frame	and	cleaned	up
some	of	the	messiness	in	the	spreadsheet.

How	it	works…
We	mostly	manage	to	get	the	data	we	want	in	step	2	by	skipping	rows	and
columns	we	do	not	want,	but	there	are	still	a	number	of	issues:

read_excel	interprets	all	of	the	GDP	data	as	character	data,	many	rows
are	loaded	with	no	useful	data,	and	the	column	names	do	not	represent	the	data
well.	In	addition,	the	metropolitan	area	column	might	be	useful	as	an	index,	but
there	are	leading	and	trailing	blanks	and	there	may	be	missing	or	duplicated
values.

read_excel	interprets	Year	as	the	column	name	for	the	metropolitan
area	data	because	it	looks	for	a	header	above	the	data	for	that	Excel	column	and

finds	Year	there.	We	rename	that	column	metro	in	step	4.	We	also	use

strip	to	fix	the	problem	with	leading	and	trailing	blanks.	If	there	had	only

been	leading	blanks,	we	could	have	used	lstrip,	or	rstrip	if	there
had	only	been	trailing	blanks.	It	is	a	good	idea	to	assume	that	there	might	be
leading	or	trailing	blanks	in	any	character	data	and	clean	that	data	shortly	after
the	initial	import.
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The	spreadsheet	authors	used	..	to	represent	missing	data.	Since	this	is
actually	valid	character	data,	those	columns	get	the	object	data	type	(how	pandas
treats	columns	with	character	or	mixed	data).	We	coerce	a	conversion	to	numeric

in	step	5.	This	also	results	in	the	original	values	of	..	being	replaced	with

NaN	(not	a	number),	pandas'	value	for	missing	numbers.	This	is	what	we	want.

We	can	fix	all	of	the	per	capita	GDP	columns	with	just	a	few	lines	because
pandas	makes	it	easy	to	iterate	over	the	columns	of	a	data	frame.	By	specifying

[1:],	we	iterate	from	the	second	column	to	the	last	column.	We	can	then
change	those	columns	to	numeric	and	rename	them	to	something	more
appropriate.

There	are	several	reasons	why	it	is	a	good	idea	to	clean	up	the	column	headings
for	the	annual	GDP	columns:	it	helps	us	to	remember	what	the	data	actually	is;	if
we	merge	it	with	other	data	by	metropolitan	area,	we	will	not	have	to	worry
about	conflicting	variable	names;	and	we	can	use	attribute	access	to	work	with
pandas	series	based	on	those	columns,	which	I	will	discuss	in	more	detail	in	the
There's	more…	section	of	this	recipe.

describe	in	step	6	shows	us	that	only	between	420	and	480	rows	have
valid	data	for	per	capita	GDP.	When	we	drop	all	rows	that	have	missing	values
for	all	per	capita	GDP	columns	in	step	7,	we	end	up	with	480	rows	in	the	data
frame,	which	is	what	we	expected.

There's	more…
Once	we	have	a	pandas	data	frame,	we	have	the	ability	to	treat	columns	as	more
than	just	columns.	We	can	use	attribute	access	(such	as
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percapitaGPA.metro)	or	bracket	notation

(percapitaGPA['metro'])	to	get	the	functionality	of	a	pandas
data	series.	Either	method	makes	it	possible	to	use	data	series	string-inspecting

methods	such	as	str.startswith,	and	counting	methods	such	as

nunique.	Note	that	the	original	column	names	of	20##	did	not	allow
for	attribute	access	because	they	started	with	a	number,	so

percapitaGDP.pcGDP2001.count()	works,	but

percapitaGDP.2001.count()	returns	a	syntax	error

because	2001	is	not	a	valid	Python	identifier	(since	it	starts	with	a	number).

Pandas	is	rich	with	features	for	string	manipulation	and	for	data	series
operations.	We	will	try	many	of	them	out	in	subsequent	recipes.	This	recipe
showed	those	I	find	most	useful	when	importing	Excel	data.

See	also
There	are	good	reasons	to	consider	reshaping	this	data.	Instead	of	18	columns	of
GDP	per	capita	data	for	each	metropolitan	area,	we	should	have	18	rows	of	data
for	each	metropolitan	area,	with	columns	for	year	and	GDP	per	capita.	Recipes
for	reshaping	data	can	be	found	in	Chapter	9,	Tidying	and	Reshaping	Data.

Import ing	data 	 f rom	SQL
databases

In	this	recipe,	we	will	use	pymssql	and	mysql	apis	to	read	data
from	Microsoft	SQL	Server	and	MySQL	(now	owned	by	Oracle)	databases,
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respectively.	Data	from	sources	such	as	these	tends	to	be	well	structured	since	it
is	designed	to	facilitate	simultaneous	transactions	by	members	of	organizations,
and	those	who	interact	with	them.	Each	transaction	is	also	likely	related	to	some
other	organizational	transaction.

This	means	that	although	data	tables	from	enterprise	systems	are	more	reliably
structured	than	data	from	CSV	files	and	Excel	files,	their	logic	is	less	likely	to	be
self-contained.	You	need	to	know	how	the	data	from	one	table	relates	to	data
from	another	table	to	understand	its	full	meaning.	These	relationships	need	to	be
preserved,	including	the	integrity	of	primary	and	foreign	keys,	when	pulling
data.	Moreover,	well-structured	data	tables	are	not	necessarily	uncomplicated
data	tables.	There	are	often	sophisticated	coding	schemes	that	determine	data
values,	and	these	coding	schemes	can	change	over	time.	For	example,	codes	for
staff	ethnicity	at	a	retail	store	chain	might	be	different	in	1998	than	they	are	in
2020.	Similarly,	frequently	there	are	codes	for	missing	values,	such	as

99999,	that	pandas	will	understand	as	valid	values.

Since	much	of	this	logic	is	business	logic,	and	implemented	in	stored	procedures
or	other	applications,	it	is	lost	when	pulled	out	of	this	larger	system.	Some	of
what	is	lost	will	eventually	have	to	be	reconstructed	when	preparing	data	for
analysis.	This	almost	always	involves	combining	data	from	multiple	tables,	so	it
is	important	to	preserve	the	ability	to	do	that.	But	it	also	may	involve	adding
some	of	the	coding	logic	back	after	loading	the	SQL	table	into	a	pandas	data
frame.	We	explore	how	to	do	that	in	this	recipe.

Getting	ready
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This	recipe	assumes	you	have	the	pymssql	and	mysql	APIs	installed.

If	you	do	not,	it	is	relatively	straightforward	to	install	them	with	pip.	From	the

terminal,	or	PowerShell	(in	Windows),	enter	pip	install

pymssql	or	pip	install	mysql-connector-

python.

NOTE
The	dataset	used	in	this	recipe	is	available	for	public	use	at
https://archive.ics.uci.edu/ml/machine-learning-databases/00320/.

How	to	do	it...
We	import	SQL	Server	and	MySQL	data	tables	into	a	pandas	data	frame	as
follows:

1.	 Import	pandas,	numpy,	pymssql,	and	mysql.

This	step	assumes	that	you	have	installed	the	pymssql	and	mysql
APIs:

>>>	import	pandas	as	pd

>>>	import	numpy	as	np

>>>	import	pymssql

>>>	import	mysql.connector

2.	 Use	the	pymssql	API	and	read_sql	to	retrieve	and	load	data
from	a	SQL	Server	instance.
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Select	the	columns	we	want	from	the	SQL	Server	data	and	use	SQL	aliases	to

improve	column	names	(for	example,	fedu	AS

fathereducation).	Create	a	connection	to	the	SQL	Server	data

by	passing	database	credentials	to	the	pymssql	connect	function.	Create

a	pandas	data	frame	by	passing	the	select	statement	and

connection	object	to	read_sql.	Close	the	connection	to
return	it	to	the	pool	on	the	server:

>>>	query	=	"SELECT	studentid,

school,	sex,	age,	famsize,\

...			medu	AS	mothereducation,	fedu

AS	fathereducation,\

...			traveltime,	studytime,

failures,	famrel,	freetime,\

...			goout,	g1	AS	gradeperiod1,	g2

AS	gradeperiod2,\

...			g3	AS	gradeperiod3	From

studentmath"

>>>

>>>	server	=	"pdcc.c9sqqzd5fulv.us-

west-2.rds.amazonaws.com"

>>>	user	=	"pdccuser"

>>>	password	=	"pdccpass"

>>>	database	=	"pdcctest"

>>>

>>>	conn	=
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pymssql.connect(server=server,

...			user=user,	password=password,

database=database)

>>>

>>>	studentmath	=

pd.read_sql(query,conn)

>>>	conn.close()

3.	 Check	the	data	types	and	the	first	few	rows:

>>>	studentmath.dtypes

studentid										object

school													object

sex																object

age																	int64

famsize												object

mothereducation					int64

fathereducation					int64

traveltime										int64

studytime											int64

failures												int64

famrel														int64

freetime												int64

goout															int64

gradeperiod1								int64
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gradeperiod2								int64

gradeperiod3								int64

dtype:	object

>>>	studentmath.head()

		studentid	school		...

gradeperiod2		gradeperiod3

0							001					GP		...												6													6

1							002					GP		...												5													6

2							003					GP		...												8												10

3							004					GP		...											14												15

4							005					GP		...											10												10

[5	rows	x	16	columns]

4.	 (Alternative)	Use	the	mysql	connector	and	read_sql	to	get	data
from	MySQL.

Create	a	connection	to	the	mysql	data	and	pass	that	connection	to

read_sql	to	retrieve	the	data	and	load	it	into	a	pandas	data	frame.	(The
same	data	file	on	student	math	scores	was	uploaded	to	SQL	Server	and
MySQL,	so	we	can	use	the	same	SQL	SELECT	statement	we	used	in	the
previous	step.):

>>>	host	=

"pdccmysql.c9sqqzd5fulv.us-

west-2.rds.amazonaws.com"

>>>	user	=	"pdccuser"

>>>	password	=	"pdccpass"
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>>>	database	=	"pdccschema"

>>>	connmysql	=

mysql.connector.connect(host=host,

...			database=database,user=user,password=password)

>>>	studentmath	=

pd.read_sql(sqlselect,connmysql)

>>>	connmysql.close()

5.	 Rearrange	the	columns,	set	an	index,	and	check	for	missing	values.

Move	the	grade	data	to	the	left	of	the	data	frame,	just	after	studentid.

Also	move	the	freetime	column	to	the	right	after	traveltime

and	studytime.	Confirm	that	each	row	has	an	ID	and	that	the	IDs	are

unique,	and	set	studentid	as	the	index:

>>>	newcolorder	=	['studentid',

'gradeperiod1',	'gradeperiod2',

...			'gradeperiod3',	'school',

'sex',	'age',	'famsize',

...			'mothereducation',

'fathereducation',

'traveltime',

...			'studytime',	'freetime',

'failures',	'famrel',

...			'goout']

>>>	studentmath	=

studentmath[newcolorder]
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>>>	studentmath.studentid.count()

395

>>>	studentmath.studentid.nunique()

395

>>>

studentmath.set_index('studentid',

inplace=True)

6.	 Use	the	data	frame's	count	function	to	check	for	missing	values:

>>>	studentmath.count()

gradeperiod1							395

gradeperiod2							395

gradeperiod3							395

school													395

sex																395

age																395

famsize												395

mothereducation				395

fathereducation				395

traveltime									395

studytime										395

freetime											395

failures											395

famrel													395
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goout														395

dtype:	int64

7.	 Replace	coded	data	values	with	more	informative	values.

Create	a	dictionary	with	the	replacement	values	for	the	columns,	and	then	use

replace	to	set	those	values:

>>>	setvalues={"famrel":{1:"1:very

bad",2:"2:bad",3:"3:neutral",

...					4:"4:good",5:"5:excellent"},

...			"freetime":{1:"1:very

low",2:"2:low",3:"3:neutral",

...					4:"4:high",5:"5:very	high"},

...			"goout":{1:"1:very

low",2:"2:low",3:"3:neutral",

...					4:"4:high",5:"5:very	high"},

...			"mothereducation":

{0:np.nan,1:"1:k-4",2:"2:5-9",

...					3:"3:secondary

ed",4:"4:higher	ed"},

...			"fathereducation":

{0:np.nan,1:"1:k-4",2:"2:5-9",

...					3:"3:secondary

ed",4:"4:higher	ed"}}

>>>	studentmath.replace(setvalues,

inplace=True)
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>>>	setvalueskeys	=	[k	for	k	in

setvalues]

8.	 Change	the	type	for	columns	with	the	changed	data	to	category.

Check	for	any	changes	in	memory	usage:

>>>

studentmath[setvalueskeys].memory_usage(index=False)

famrel													3160

freetime											3160

goout														3160

mothereducation				3160

fathereducation				3160

dtype:	int64

>>>	for	col	in

studentmath[setvalueskeys].columns:

...					studentmath[col]	=

studentmath[col].astype('category')

...

>>>

studentmath[setvalueskeys].memory_usage(index=False)

famrel													595

freetime											595

goout														595

mothereducation				587
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fathereducation				587

dtype:	int64

9.	 Calculate	percentages	for	values	in	the	famrel	column.

Run	value_counts	and	set	normalize	to	True	to
generate	percentages:

>>>

studentmath['famrel'].value_counts(sort=False,

normalize=True)

1:very	bad				0.02

2:bad									0.05

3:neutral					0.17

4:good								0.49

5:excellent			0.27

Name:	famrel,	dtype:	float64

10.	 Use	apply	to	calculate	percentages	for	multiple	columns:

>>>

studentmath[['freetime','goout']].\

...			apply(pd.Series.value_counts,

sort=False,	normalize=True)

													freetime		goout

1:very	low							0.05			0.06

2:low												0.16			0.26

3:neutral								0.40			0.33
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4:high											0.29			0.22

5:very	high						0.10			0.13

>>>

>>>

studentmath[['mothereducation','fathereducation']].\

...			apply(pd.Series.value_counts,

sort=False,	normalize=True)

																mothereducation		fathereducation

1:k-

4																						0.15													0.21

2:5-

9																						0.26													0.29

3:secondary

ed													0.25													0.25

4:higher

ed																0.33													0.24

The	preceding	steps	retrieved	a	data	table	from	a	SQL	database,	loaded	that	data
into	pandas,	and	did	some	initial	data	checking	and	cleaning.

How	it	works…
Since	data	from	enterprise	systems	is	typically	better	structured	than	CSV	or
Excel	files,	we	do	not	need	to	do	things	such	as	skip	rows	or	deal	with	different
logical	data	types	in	a	column.	But	some	massaging	is	still	usually	required
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before	we	can	begin	exploratory	analysis.	There	are	often	more	columns	than	we
need,	and	some	column	names	are	not	intuitive	or	not	ordered	in	the	best	way	for
analysis.	The	meaningfulness	of	many	data	values	is	not	stored	in	the	data	table,

to	avoid	entry	errors	and	save	on	storage	space.	For	example,	3	is	stored	for

mother's	education	rather	than	secondary

education.	It	is	a	good	idea	to	reconstruct	that	coding	as	early	in	the
cleaning	process	as	possible.

To	pull	data	from	a	SQL	database	server,	we	need	a	connection	object	to
authenticate	us	on	the	server,	and	a	SQL	select	string.	These	can	be	passed	to

read_sql	to	retrieve	the	data	and	load	it	into	a	pandas	data	frame.	I

usually	use	the	SQL	SELECT	statement	to	do	a	bit	of	cleanup	of	column
names	at	this	point.	I	sometimes	also	reorder	columns,	but	I	do	that	later	in	this
recipe.

We	set	the	index	in	step	5,	first	confirming	that	every	row	has	a	value	for

studentid	and	that	it	is	unique.	This	is	often	more	important	when
working	with	enterprise	data	because	we	will	almost	always	need	to	merge	the
retrieved	data	with	other	data	files	on	the	system.	Although	an	index	is	not
required	for	this	merging,	the	discipline	of	setting	one	prepares	us	for	the	tricky
business	of	merging	data	down	the	road.	It	will	also	likely	improve	the	speed	of
the	merge.

We	use	the	data	frame's	count	function	to	check	for	missing	values	and
there	are	no	missing	values	–	non-missing	values	is	395	(the	number	of	rows)	for
every	column.	This	is	almost	too	good	to	be	true.	There	may	be	values	that	are
logically	missing;	that	is,	valid	numbers	that	nonetheless	connote	missing	values,
such	as	-1,	0,	9,	or	99.	We	address	this	possibility	in	the	next	step.
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Step	7	demonstrates	a	useful	technique	for	replacing	data	values	for	multiple
columns.	We	create	a	dictionary	to	map	original	values	to	new	values	for	each

column,	and	then	run	it	using	replace.	To	reduce	the	amount	of	storage
space	taken	up	by	the	new	verbose	values,	we	convert	the	data	type	of	those

columns	to	category.	We	do	this	by	generating	a	list	of	the	keys	of	our

setvalues	dictionary	–	setvalueskeys	=	[k	for

k	in	setvalues]	generates	[famrel,	freetime,

goout,	mothereducation,	and

fathereducation].	We	then	iterate	over	those	five	columns	and

use	the	astype	method	to	change	the	data	type	to	category.	Notice
that	the	memory	usage	for	those	columns	is	reduced	substantially.

Finally,	we	check	the	assignment	of	new	values	by	using

value_counts	to	view	relative	frequencies.	We	use	apply

because	we	want	to	run	value_counts	on	multiple	columns.	To	avoid

value_counts	sorting	by	frequency,	we	set	sort	to	False.

The	data	frame	replace	method	is	also	a	handy	tool	for	dealing	with
logical	missing	values	that	will	not	be	recognized	as	missing	when	retrieved	by

read_sql.	0	values	for	mothereducation	and

fathereducation	seem	to	fall	into	that	category.	We	fix	this

problem	in	the	setvalues	dictionary	by	indicating	that	0	values	for

mothereducation	and	fathereducation	should	be

replaced	with	NaN.	It	is	important	to	address	these	kinds	of	missing	values
shortly	after	the	initial	import	because	they	are	not	always	obvious	and	can
significantly	impact	all	subsequent	work.
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Users	of	packages	such	as	SPPS,	SAS,	and	R	will	notice	the	difference	between

this	approach	and	value	labels	in	SPSS	and	R,	and	proc	format	in	SAS.
In	pandas,	we	need	to	change	the	actual	data	to	get	more	informative	values.
However,	we	reduce	how	much	data	is	actually	stored	by	giving	the	column	a
category	data	type,	similar	to	factors	in	R.

There's	more…
I	moved	the	grade	data	to	near	the	beginning	of	the	data	frame.	I	find	it	helpful
to	have	potential	target	or	dependent	variables	in	the	leftmost	columns,	to	keep
them	at	the	forefront	of	my	thinking.	It	is	also	helpful	to	keep	similar	columns
together.	In	this	example,	personal	demographic	variables	(sex,	age)	are	next	to

one	another,	as	are	family	variables	(mothereducation,

fathereducation),	and	how	students	spend	their	time

(traveltime,	studytime,	and	freetime).

You	could	have	used	map	instead	of	replace	in	step	7.	Prior	to	version

19.2	of	pandas,	map	was	significantly	more	efficient.	Since	then,	the	difference
in	efficiency	has	been	much	smaller.	If	you	are	working	with	a	very	large
dataset,	the	difference	may	still	be	enough	to	consider	using	map.

See	also
The	recipes	in	Chapter	8,	Addressing	Data	Issues	when	Combining	DataFrames,
go	into	detail	on	merging	data.	We	will	take	a	closer	look	at	bivariate	and
multivariate	relationships	between	variables	in	Chapter	4,	Identifying	Missing
Values	and	Outliers	in	Subsets	of	Data.	We	demonstrate	how	to	use	some	of
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these	same	approaches	in	packages	such	as	SPSS,	SAS,	and	R	in	subsequent
recipes	in	this	chapter.

Import ing	SPSS, 	Stata , 	and	SAS
data

We	will	use	pyreadstat	to	read	data	from	three	popular	statistical

packages	into	pandas.	The	key	advantage	of	pyreadstat	is	that	it
allows	data	analysts	to	import	data	from	these	packages	without	losing	metadata,
such	as	variable	and	value	labels.

The	SPSS,	Stata,	and	SAS	data	files	we	receive	often	come	to	us	with	the	data
issues	of	CSV	and	Excel	files	and	SQL	databases	having	been	resolved.	We	do
not	typically	have	the	invalid	column	names,	changes	in	data	types,	and	unclear
missing	values	that	we	can	get	with	CSV	or	Excel	files,	nor	do	we	usually	get
the	detachment	of	data	from	business	logic,	such	as	the	meaning	of	data	codes,
that	we	often	get	with	SQL	data.	When	someone	or	some	organization	shares	a
data	file	from	one	of	these	packages	with	us,	they	have	often	added	variable
labels	and	value	labels	for	categorical	data.	For	example,	a	hypothetical	data

column	called	presentsat	has	the	variable	label	overall

satisfaction	with	presentation	and	value	labels

1-5,	with	1	being	not	at	all	satisfied	and	5	being	highly	satisfied.

The	challenge	is	retaining	that	metadata	when	importing	data	from	those	systems
into	pandas.	There	is	no	precise	equivalent	to	variable	and	value	labels	in
pandas,	and	built-in	tools	for	importing	SAS,	Stata,	and	SAS	data	lose	the

metadata.	In	this	recipe,	we	will	use	pyreadstat	to	load	variable	and
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value	label	information	and	use	a	couple	of	techniques	for	representing	that
information	in	pandas.

Getting	ready
This	recipe	assumes	you	have	installed	the	pyreadstat	package.	If	it	is

not	installed,	you	can	install	it	with	pip.	From	the	terminal,	or	PowerShell	(in

Windows),	enter	pip	install	pyreadstat.	You	will	need
the	SPSS,	Stata,	and	SAS	data	files	for	this	recipe	to	run	the	code.

We	will	work	with	data	from	the	United	States	National	Longitudinal	Survey
of	Youth	(NLS).

NOTE
The	National	Longitudinal	Survey	of	Youth	is	conducted	by	the	United	States
Bureau	of	Labor	Statistics.	This	survey	started	with	a	cohort	of	individuals	in
1997	who	were	born	between	1980	and	1985,	with	annual	follow-ups	each	year
through	2017.	For	this	recipe,	I	pulled	42	variables	on	grades,	employment,
income,	and	attitudes	toward	government,	from	the	hundreds	of	data	items	on	the
survey.	Separate	files	for	SPSS,	Stata,	and	SAS	can	be	downloaded	from	the
repository.	NLS	data	can	be	downloaded	from
https://www.nlsinfo.org/investigator/pages/search.

How	to	do	it...
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We	will	import	data	from	SPSS,	Stata,	and	SAS,	retaining	metadata	such	as
value	labels:

1.	 Import	pandas,	numpy,	and	pyreadstat.

This	step	assumes	that	you	have	installed	pyreadstat:

>>>	import	pandas	as	pd

>>>	import	numpy	as	np

>>>	import	pyreadstat

2.	 Retrieve	the	SPSS	data.

Pass	a	path	and	filename	to	the	read_sav	method	of

pyreadstat.	Display	the	first	few	rows	and	a	frequency	distribution.
Notice	that	the	column	names	and	value	labels	are	non-descriptive,	and	that

read_sav	creates	both	a	pandas	data	frame	and	a	meta	object:

>>>	nls97spss,	metaspss	=

pyreadstat.read_sav('data/nls97.sav')

>>>	nls97spss.dtypes

R0000100				float64

R0536300				float64

R0536401				float64

...

U2962900				float64

U2963000				float64

Z9063900				float64

dtype:	object
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>>>	nls97spss.head()

			R0000100		R0536300		...		U2963000		Z9063900

0									1									2		...							nan								52

1									2									1		...									6									0

2									3									2		...									6									0

3									4									2		...									6									4

4									5									1		...									5								12

[5	rows	x	42	columns]

>>>

nls97spss['R0536300'].value_counts(normalize=True)

1.00			0.51

2.00			0.49

Name:	R0536300,	dtype:	float64

3.	 Grab	the	metadata	to	improve	column	labels	and	value	labels.

The	metaspss	object	created	when	we	called	read_sav	has	the
column	labels	and	the	value	labels	from	the	SPSS	file.	Use	the

variable_value_labels	dictionary	to	map	values	to	value

labels	for	one	column	(R0536300).	(This	does	not	change	the	data.	It

only	improves	our	display	when	we	run	value_counts.)	Use	the

set_value_labels	method	to	actually	apply	the	value	labels	to
the	data	frame:

>>>

metaspss.variable_value_labels['R0536300']
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{0.0:	'No	Information',	1.0:	'Male',

2.0:	'Female'}

>>>	nls97spss['R0536300'].\

...			map(metaspss.variable_value_labels['R0536300']).\

...			value_counts(normalize=True)

Male					0.51

Female			0.49

Name:	R0536300,	dtype:	float64

>>>	nls97spss	=

pyreadstat.set_value_labels(nls97spss,

metaspss,

formats_as_category=True)

4.	 Use	column	labels	in	the	metadata	to	rename	the	columns.

To	use	the	column	labels	from	metaspss	in	our	data	frame,	we	can

simply	assign	the	column	labels	in	metaspss	to	our	data	frame's
column	names.	Clean	up	the	column	names	a	bit	by	changing	them	to
lowercase,	changing	spaces	to	underscores,	and	removing	all	remaining	non-
alphanumeric	characters:

>>>	nls97spss.columns	=

metaspss.column_labels

>>>	nls97spss['KEY!SEX	(SYMBOL)

1997'].value_counts(normalize=True)

Male					0.51

Female			0.49

Telegram Channel @nettrain



Name:	KEY!SEX	(SYMBOL)	1997,	dtype:

float64

>>>	nls97spss.dtypes

PUBID	-	YTH	ID	CODE

1997																								float64

KEY!SEX	(SYMBOL)

1997																										category

KEY!BDATE	M/Y	(SYMBOL)

1997																					float64

KEY!BDATE	M/Y	(SYMBOL)

1997																					float64

CV_SAMPLE_TYPE

1997																												category

KEY!RACE_ETHNICITY	(SYMBOL)

1997															category

...

HRS/WK	R	WATCHES	TELEVISION

2017															category

HRS/NIGHT	R	SLEEPS

2017																									float64

CVC_WKSWK_YR_ALL

L99																												float64

dtype:	object
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>>>	nls97spss.columns	=

nls97spss.columns.\

...					str.lower().\

...					str.replace('	','_').\

...					str.replace('[^a-z0-9_]',	'')

>>>

nls97spss.set_index('pubid__yth_id_code_1997',

inplace=True)

5.	 Simplify	the	process	by	applying	the	value	labels	from	the	beginning.

The	data	values	can	actually	be	applied	in	the	initial	call	to	read_sav

by	setting	apply_value_formats	to	True.	This	eliminates

the	need	to	call	the	set_value_labels	function	later:

>>>	nls97spss,	metaspss	=

pyreadstat.read_sav('data/nls97.sav',

apply_value_formats=True,

formats_as_category=True)

>>>	nls97spss.columns	=

metaspss.column_labels

>>>	nls97spss.columns	=

nls97spss.columns.\

...			str.lower().\

...			str.replace('	','_').\

...			str.replace('[^a-z0-9_]',	'')

6.	 Show	the	columns	and	a	few	rows:
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>>>	nls97spss.dtypes

pubid__yth_id_code_1997																								float64

keysex_symbol_1997																												category

keybdate_my_symbol_1997																								float64

keybdate_my_symbol_1997																								float64

...

hrsnight_r_sleeps_2017																									float64

cvc_wkswk_yr_all_l99																											float64

dtype:	object

>>>	nls97spss.head()

			pubid__yth_id_code_1997

keysex_symbol_1997		...		\

0																								1													Female		...			

1																								2															Male		...			

2																								3													Female		...			

3																								4													Female		...			

4																								5															Male		...			

			hrsnight_r_sleeps_2017		cvc_wkswk_yr_all_l99		

0																					nan																				52		

1																							6																					0		

2																							6																					0		

3																							6																					4		

4																							5																				12		
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[5	rows	x	42	columns]

7.	 Run	frequencies	on	one	of	the	columns	and	set	the	index:

>>>

nls97spss.govt_responsibility__provide_jobs_2006.\

...			value_counts(sort=False)

Definitely	should	be								454

Definitely	should	not	be				300

Probably	should	be										617

Probably	should	not	be						462

Name:

govt_responsibility__provide_jobs_2006,

dtype:	int64

>>>

nls97spss.set_index('pubid__yth_id_code_1997',

inplace=True)

8.	 Import	the	Stata	data,	apply	value	labels,	and	improve	the	column	headings.

Use	the	same	methods	for	the	Stata	data	that	we	use	for	the	SPSS	data:

>>>	nls97stata,	metastata	=

pyreadstat.read_dta('data/nls97.dta',

apply_value_formats=True,

formats_as_category=True)

>>>	nls97stata.columns	=

metastata.column_labels
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>>>	nls97stata.columns	=

nls97stata.columns.\

...					str.lower().\

...					str.replace('	','_').\

...					str.replace('[^a-z0-9_]',	'')

>>>	nls97stata.dtypes

pubid__yth_id_code_1997																								float64

keysex_symbol_1997																												category

keybdate_my_symbol_1997																								float64

keybdate_my_symbol_1997																								float64

...

hrsnight_r_sleeps_2017																									float64

cvc_wkswk_yr_all_l99																											float64

dtype:	object

9.	 View	a	few	rows	of	the	data	and	run	frequency:

>>>	nls97stata.head()

			pubid__yth_id_code_1997

keysex_symbol_1997		...		\

0																								1													Female		...			

1																								2															Male		...			

2																								3													Female		...			

3																								4													Female		...			

4																								5															Male		...			
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			hrsnight_r_sleeps_2017		cvc_wkswk_yr_all_l99		

0																						-5																				52		

1																							6																					0		

2																							6																					0		

3																							6																					4		

4																							5																				12		

[5	rows	x	42	columns]

>>>

nls97stata.govt_responsibility__provide_jobs_2006.\

...			value_counts(sort=False)

-5.0																								1425

-4.0																								5665

-2.0																										56

-1.0																											5

Definitely	should	be									454

Definitely	should	not	be					300

Probably	should	be											617

Probably	should	not	be							462

Name:

govt_responsibility__provide_jobs_2006,

dtype:	int64

10.	 Fix	the	logical	missing	values	that	show	up	with	the	Stata	data	and	set	an
index:
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>>>	nls97stata.min()

pubid__yth_id_code_1997																								1

keysex_symbol_1997																								Female

keybdate_my_symbol_1997																								1

keybdate_my_symbol_1997																				1,980

...

cv_bio_child_hh_2017																										-5

cv_bio_child_nr_2017																										-5

hrsnight_r_sleeps_2017																								-5

cvc_wkswk_yr_all_l99																										-4

dtype:	object

>>>

nls97stata.replace(list(range(-9,0)),

np.nan,	inplace=True)

>>>	nls97stata.min()

pubid__yth_id_code_1997																								1

keysex_symbol_1997																								Female

keybdate_my_symbol_1997																								1

keybdate_my_symbol_1997																				1,980

...

cv_bio_child_hh_2017																											0

cv_bio_child_nr_2017																											0

hrsnight_r_sleeps_2017																									0
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cvc_wkswk_yr_all_l99																											0

dtype:	object

>>>

nls97stata.set_index('pubid__yth_id_code_1997',

inplace=True)

11.	 Retrieve	the	SAS	data,	using	the	SAS	catalog	file	for	value	labels:

The	data	values	for	SAS	are	stored	in	a	catalog	file.	Setting	the	catalog	file
path	and	filename	retrieves	the	value	labels	and	applies	them:

>>>	nls97sas,	metasas	=

pyreadstat.read_sas7bdat('data/nls97.sas7bdat',

catalog_file='data/nlsformats3.sas7bcat',

formats_as_category=True)

>>>	nls97sas.columns	=

metasas.column_labels

>>>

>>>	nls97sas.columns	=

nls97sas.columns.\

...					str.lower().\

...					str.replace('	','_').\

...					str.replace('[^a-z0-9_]',	'')

>>>

>>>	nls97sas.head()

			pubid__yth_id_code_1997

keysex_symbol_1997		...		\
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0																								1													Female		...			

1																								2															Male		...			

2																								3													Female		...			

3																								4													Female		...			

4																								5															Male		...			

			hrsnight_r_sleeps_2017		cvc_wkswk_yr_all_l99		

0																					nan																				52		

1																							6																					0		

2																							6																					0		

3																							6																					4		

4																							5																				12		

[5	rows	x	42	columns]

>>>

nls97sas.keysex_symbol_1997.value_counts()

Male						4599

Female				4385

Name:	keysex_symbol_1997,	dtype:

int64

>>>

nls97sas.set_index('pubid__yth_id_code_1997',

inplace=True)

This	demonstrates	how	to	import	SPSS,	SAS,	and	Stata	data	without	losing
important	metadata.
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How	it	works...
The	read_sav,	read_dta,	and	read_sas7bdat	methods

of	pyreadstat,	for	SPSS,	Stata,	and	SAS	data	files,	respectively,	work
in	a	similar	manner.	Value	labels	can	be	applied	when	reading	in	the	data	by

setting	apply_value_formats	to	True	for	SPSS	and	Stata
files	(steps	5	and	8),	or	by	providing	a	catalog	file	path	and	filename	for	SAS

(step	11).	We	can	set	formats_as_category	to	True	to

change	the	data	type	to	category	for	those	columns	where	the	data	values
will	change.	The	meta	object	has	the	column	names	and	the	column	labels	from
the	statistical	package,	so	metadata	column	labels	can	be	assigned	to	pandas	data

frame	column	names	at	any	point	(nls97spss.columns	=

metaspss.column_labels).	We	can	even	revert	to	the
original	column	headings	after	assigning	meta	column	labels	to	them	by	setting
pandas	column	names	to	the	metadata	column	names

(nls97spss.columns	=

metaspss.column_names).

In	step	3,	we	read	the	SPSS	data	without	applying	value	labels.	We	looked	at	the
dictionary	for	one	variable

(metaspss.variable_value_labels['R0536300']
but	we	could	have	viewed	it	for	all	variables

(metaspss.variable_value_labels).	When	we	are
satisfied	that	the	labels	make	sense,	we	can	set	them	by	calling	the

set_value_labels	function.	This	is	a	good	approach	when	you	do
not	know	the	data	well	and	want	to	inspect	the	labels	before	applying	them.
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The	column	labels	from	the	meta	object	are	often	a	better	choice	than	the
original	column	headings.	Column	headings	can	be	quite	cryptic,	particularly
when	the	SPSS,	Stata,	or	SAS	file	is	based	on	a	large	survey,	as	in	this	example.
But	the	labels	are	not	usually	ideal	for	column	headings	either.	They	sometimes
have	spaces,	capitalization	that	is	not	helpful,	and	non-alphanumeric	characters.
We	chain	some	string	operations	to	switch	to	lowercase,	replace	spaces	with
underscores,	and	remove	non-alphanumeric	characters.

Handling	missing	values	is	not	always	straightforward	with	these	data	files,
since	there	are	often	many	reasons	why	data	is	missing.	If	the	file	is	from	a
survey,	the	missing	value	may	be	because	of	a	survey	skip	pattern,	or	a
respondent	failed	to	respond,	or	the	response	was	invalid,	and	so	on.	The	NLS
has	9	possible	values	for	missing,	from	-1	to	-9.	The	SPSS	import	automatically

set	those	values	to	NaN,	while	the	Stata	import	retained	the	original	values.
(We	could	have	gotten	the	SPSS	import	to	retain	those	values	by	setting

user_missing	to	True.)	For	the	Stata	data,	we	need	to	tell	it	to

replace	all	values	from	-1	to	-9	with	NaN.	We	do	this	by	using	the	data	frame's

replace	function	and	passing	it	a	list	of	integers	from	-9	to	-1

(list(range(-9,0))).

There's	more…
You	may	have	noticed	similarities	between	this	recipe	and	the	previous	one	in

terms	of	how	value	labels	are	set.	The	set_value_labels	function

is	like	the	data	frame	replace	operation	we	used	to	set	value	labels	in	that

recipe.	We	passed	a	dictionary	to	replace	that	mapped	columns	to	value

labels.	The	set_value_labels	function	in	this	recipe	essentially
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does	the	same	thing,	using	the	variable_value_labels
property	of	the	meta	object	as	the	dictionary.

Data	from	statistical	packages	is	often	not	as	well	structured	as	SQL	databases
tend	to	be	in	one	significant	way.	Since	they	are	designed	to	facilitate	analysis,
they	often	violate	database	normalization	rules.	There	is	often	an	implied
relational	structure	that	might	have	to	be	unflattened	at	some	point.	For	example,
the	data	combines	individual	and	event	level	data	–	person	and	hospital	visits,
brown	bear	and	date	emerged	from	hibernation.	Often,	this	data	will	need	to	be
reshaped	for	some	aspects	of	the	analysis.

See	also
The	pyreadstat	package	is	nicely	documented	at
https://github.com/Roche/pyreadstat.	The	package	has	many	useful	options	for
selecting	columns	and	handling	missing	data	that	space	did	not	permit	me	to
demonstrate	in	this	recipe.

Import ing	R	data

We	will	use	pyreadr	to	read	an	R	data	file	into	pandas.	Since

pyreadr	cannot	capture	the	metadata,	we	will	write	code	to	reconstruct
value	labels	(analogous	to	R	factors)	and	column	headings.	This	is	similar	to
what	we	did	in	the	Importing	data	from	SQL	databases	recipe.

The	R	statistical	package	is,	in	many	ways,	similar	to	the	combination	of	Python
and	pandas,	at	least	in	its	scope.	Both	have	strong	tools	across	a	range	of	data
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preparation	and	data	analysis	tasks.	Some	data	scientists	work	with	both	R	and
Python,	perhaps	doing	data	manipulation	in	Python	and	statistical	analysis	in	R,
or	vice-versa,	depending	on	their	preferred	packages.	But	there	is	currently	a

scarcity	of	tools	for	reading	data	saved	in	R,	as	rds	or	rdata	files,	into
Python.	The	analyst	often	saves	the	data	as	a	CSV	file	first,	and	then	loads	the

CSV	file	into	Python.	We	will	use	pyreadr,	from	the	same	author	as

pyreadstat,	because	it	does	not	require	an	installation	of	R.

When	we	receive	an	R	file,	or	work	with	one	we	have	created	ourselves,	we	can
count	on	it	being	fairly	well	structured,	at	least	compared	to	CSV	or	Excel	files.
Each	column	will	have	only	one	data	type,	column	headings	will	have
appropriate	names	for	Python	variables,	and	all	rows	will	have	the	same
structure.	However,	we	may	need	to	restore	some	of	the	coding	logic,	as	we	did
when	working	with	SQL	data.

Getting	ready
This	recipe	assumes	you	have	installed	the	pyreadr	package.	If	it	is	not

installed,	you	can	install	it	with	pip.	From	the	terminal,	or

powershell	(in	Windows),	enter	pip	install

pyreadr.	You	will	need	the	R	rds	file	for	this	recipe	in	order	to	run	the
code.

We	will	again	work	with	the	National	Longitudinal	Survey	in	this	recipe.

How	to	do	it…
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We	will	import	data	from	R	without	losing	important	metadata:

1.	 Load	pandas,	numpy,	pprint,	and	the	pyreadr	package:

>>>	import	pandas	as	pd

>>>	import	numpy	as	np

>>>	import	pyreadr

>>>	import	pprint

2.	 Get	the	R	data.

Pass	the	path	and	filename	to	the	read_r	method	to	retrieve	the	R	data

and	load	it	into	memory	as	a	pandas	data	frame.	read_r	can	return	one	or

more	objects.	When	reading	an	rds	file	(as	opposed	to	an	rdata	file),	it

will	return	one	object,	having	the	key	None.	We	indicate	None	to	get	the
pandas	data	frame:

>>>	nls97r	=

pyreadr.read_r('data/nls97.rds')

[None]

>>>	nls97r.dtypes

R0000100				int32

R0536300				int32

...

U2962800				int32

U2962900				int32

U2963000				int32

Z9063900				int32
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dtype:	object

>>>	nls97r.head(10)

			R0000100		R0536300		R0536401		...		U2962900		U2963000		Z9063900

0									1									2									9		...								-5								-5								52

1									2									1									7		...									2									6									0

2									3									2									9		...									2									6									0

3									4									2									2		...									2									6									4

4									5									1								10		...									2									5								12

5									6									2									1		...									2									6									6

6									7									1									4		...								-5								-5									0

7									8									2									6		...								-5								-5								39

8									9									1								10		...									2									4									0

9								10									1									3		...									2									6									0

[10	rows	x	42	columns]

3.	 Set	up	dictionaries	for	value	labels	and	column	headings.

Load	a	dictionary	that	maps	columns	to	the	value	labels	and	create	a	list	of
preferred	column	names	as	follows:

>>>	with	open('data/nlscodes.txt',

'r')	as	reader:

...					setvalues	=

eval(reader.read())

...

>>>	pprint.pprint(setvalues)
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{'R0536300':	{0.0:	'No	Information',

1.0:	'Male',	2.0:	'Female'},

'R1235800':	{0.0:	'Oversample',	1.0:

'Cross-sectional'},

'S8646900':	{1.0:	'1.	Definitely',

														2.0:	'2.	Probably	',

														3.0:	'3.	Probably	not',

														4.0:	'4.	Definitely

not'}}

...

>>>	newcols	=

['personid','gender','birthmonth','birthyear',

...			'sampletype',		'category','satverbal','satmath',

...			'gpaoverall','gpaeng','gpamath','gpascience','govjobs',

...			'govprices','govhealth','goveld','govind','govunemp',

...			'govinc','govcollege','govhousing','govenvironment',

...			'bacredits','coltype1','coltype2','coltype3','coltype4',

...			'coltype5','coltype6','highestgrade','maritalstatus',

...			'childnumhome','childnumaway','degreecol1',

...			'degreecol2','degreecol3','degreecol4','wageincome',

...			'weeklyhrscomputer','weeklyhrstv',

...			'nightlyhrssleep','weeksworkedlastyear']
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4.	 Set	value	labels	and	missing	values,	and	change	selected	columns	to	category
data	type.

Use	the	setvalues	dictionary	to	replace	existing	values	with	value

labels.	Replace	all	values	from	-9	to	-1	with	NaN:

>>>	nls97r.replace(setvalues,

inplace=True)

>>>	nls97r.head()

			R0000100

R0536300		...		U2963000		Z9063900

0									1			Female		...								-5								52

1									2					Male		...									6									0

2									3			Female		...									6									0

3									4			Female		...									6									4

4									5					Male		...									5								12

[5	rows	x	42	columns]

>>>	nls97r.replace(list(range(-9,0)),

np.nan,	inplace=True)

>>>	for	col	in	nls97r[[k	for	k	in

setvalues]].columns:

...					nls97r[col]	=

nls97r[col].astype('category')

...

>>>	nls97r.dtypes
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R0000100							int64

R0536300				category

R0536401							int64

R0536402							int64

R1235800				category

														...			

U2857300				category

U2962800				category

U2962900				category

U2963000					float64

Z9063900					float64

Length:	42,	dtype:	object

5.	 Set	meaningful	column	headings:

>>>	nls97r.columns	=	newcols

>>>	nls97r.dtypes

personid																		int64

gender																	category

birthmonth																int64

birthyear																	int64

sampletype													category

																									...			

wageincome													category

weeklyhrscomputer						category
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weeklyhrstv												category

nightlyhrssleep									float64

weeksworkedlastyear					float64

Length:	42,	dtype:	object

This	shows	how	R	data	files	can	be	imported	into	pandas	and	value	labels
assigned.

How	it	works…
Reading	R	data	into	pandas	with	pyreadr	is	fairly	straightforward.	Passing

a	filename	to	the	read_r	function	is	all	that	is	required.	Since	read_r
can	return	multiple	objects	with	one	call,	we	need	to	specify	which	object.	When

reading	an	rds	file	(as	opposed	to	an	rdata	file),	only	one	object	is

returned.	It	has	the	key	None.

In	step	3,	we	load	a	dictionary	that	maps	our	variables	to	value	labels,	and	a	list
for	our	preferred	column	headings.	In	step	4	we	apply	the	value	labels.	We	also

change	the	data	type	to	category	for	the	columns	where	we	applied	the

values.	We	do	this	by	generating	a	list	of	the	keys	of	our	setvalues

dictionary	with	[k	for	k	in	setvalues]	and	then	iterating
over	those	columns.

We	change	the	column	headings	in	step	5	to	ones	that	are	more	intuitive.	Note
that	the	order	matters	here.	We	need	to	set	the	value	labels	before	changing	the

column	names,	since	the	setvalues	dictionary	is	based	on	the	original
column	headings.
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The	main	advantage	of	using	pyreadr	to	read	R	files	directly	into	pandas
is	that	we	do	not	have	to	convert	the	R	data	into	a	CSV	file	first.	Once	we	have
written	our	Python	code	to	read	the	file,	we	can	just	rerun	it	whenever	the	R	data
changes.	This	is	particularly	helpful	when	we	do	not	have	R	on	the	machine
where	we	are	working.

There's	more…
pyreadr	is	able	to	return	multiple	data	frames.	This	is	useful	when	we

save	several	data	objects	in	R	as	an	rdata	file.	We	can	return	all	of	them
with	one	call.

print	is	a	handy	tool	for	improving	the	display	of	Python	dictionaries.

See	also
Clear	instructions	and	examples	for	pyreadr	are	available	at
https://github.com/ofajardo/pyreadr.

Feather	files,	a	relatively	new	format,	can	be	read	by	both	R	and	Python.	I
discuss	those	files	in	the	next	recipe.

We	could	have	used	rpy2	instead	of	pyreadr	to	import	R	data.

rpy2	requires	that	R	also	be	installed,	but	it	is	more	powerful	than

pyreadr.	It	will	read	R	factors	and	automatically	set	them	to	pandas	data
frame	values.	See	the	following	code:

>>>	import	rpy2.robjects	as	robjects
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>>>	from	rpy2.robjects	import

pandas2ri

>>>	pandas2ri.activate()

>>>	readRDS	=	robjects.r['readRDS']

>>>	nls97withvalues	=

readRDS('data/nls97withvalues.rds')

>>>	nls97withvalues

R0000100

R0536300		R0536401		...															U2962900				U2963000

1					1			Female									9		...																					NaN

-2147483648							

2					2					Male									7		...				3

to	10	hours	a

week											6								

3					3			Female									9		...				3

to	10	hours	a

week											6							

4					4			Female									2		...				3

to	10	hours	a

week											6								

5					5					Male								10		...				3

to	10	hours	a

week											5							

...		...						...							...		...																				...									...						
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8980	9018		Female									3		...			3

to	10	hours	a

week											4							

8981	9019				Male									9		...			3

to	10	hours	a

week											6								

8982

9020				Male									7		...																				NaN

-2147483648							

8983	9021				Male									7		...			3

to	10	hours	a

week											7							

8984	9022		Female									1		...Less

than	2	hours	per

week								7							

[8984	rows	x	42	columns]

This	generates	an	unusual	-2147483648	values.	This	is	what	happened	when

readRDS	interpreted	missing	data	in	numeric	columns.	A	global	replace	of

that	number	with	NaN,	after	confirming	that	that	is	not	a	valid	value,	would	be
a	good	next	step.

Persis t ing	 tabular 	data
We	persist	data,	copy	it	from	memory	to	local	or	remote	storage,	for	several
reasons:	to	be	able	to	access	the	data	without	having	to	repeat	the	steps	we	used
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to	generate	it;	to	share	the	data	with	others;	or	to	make	it	available	for	use	with
different	software.	In	this	recipe,	we	save	data	that	we	have	loaded	into	a	pandas
data	frame	as	different	file	types	(CSV,	Excel,	pickle,	and	feather).

Another	important,	but	sometimes	overlooked,	reason	to	persist	data	is	to
preserve	some	segment	of	our	data	that	needs	to	be	examined	more	closely;
perhaps	it	needs	to	be	scrutinized	by	others	before	our	analysis	can	be
completed.	For	analysts	who	work	with	operational	data	in	medium-	to	large-
sized	organizations,	this	process	is	part	of	the	daily	data	cleaning	workflow.

In	addition	to	these	reasons	for	persisting	data,	our	decisions	about	when	and
how	to	serialize	data	are	shaped	by	several	other	factors:	where	we	are	in	terms
of	our	data	analysis	projects,	the	hardware	and	software	resources	of	the
machine(s)	saving	and	reloading	the	data,	and	the	size	of	our	dataset.	Analysts
end	up	having	to	be	much	more	intentional	when	saving	data	than	they	are	when
pressing	Ctrl	+	S	in	their	word	processing	applications.

Once	we	persist	data,	it	is	stored	separately	from	the	logic	that	we	used	to	create
it.	I	find	this	to	be	one	of	the	most	important	threats	to	the	integrity	of	our
analysis.	Often,	we	end	up	loading	data	that	we	saved	some	time	in	the	past	(a
week	ago?	a	month	ago?	a	year	ago?)	and	forget	how	a	variable	was	defined	and
how	it	relates	to	other	variables.	If	we	are	in	the	middle	of	a	data	cleaning	task,	it
is	best	not	to	persist	our	data,	so	long	as	our	workstation	and	network	can	easily
handle	the	burden	of	regenerating	the	data.	It	is	a	good	idea	to	persist	data	only
once	we	have	reached	milestones	in	our	work.

Beyond	the	question	of	when	to	persist	data,	there	is	the	question	of	how.	If	we
are	persisting	it	for	our	own	reuse	with	the	same	software,	it	is	best	to	save	it	in	a
binary	format	native	to	that	software.	That	is	pretty	straightforward	for	tools
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such	as	SPSS,	SAS,	Stata,	and	R,	but	not	so	much	for	pandas.	But	that	is	good
news	in	a	way.	We	have	lots	of	choices,	from	CSV	and	Excel	to	pickle	and
feather.	We	save	to	all	these	file	types	in	this	recipe.

Getting	ready
You	will	need	to	install	feather	if	you	do	not	have	it	on	your	system.	You	can	do

that	by	entering	pip	install	pyarrow	in	a	terminal	window	or

powershell	(in	Windows).	If	you	do	not	already	have	a	subfolder

named	Views	in	your	chapter	1	folder,	you	will	need	to	create	it	in
order	to	run	the	code	for	this	recipe.

NOTE
This	dataset,	taken	from	the	Global	Historical	Climatology	Network	integrated
database,	is	made	available	for	public	use	by	the	United	States	National
Oceanic	and	Atmospheric	Administration	at	https://www.ncdc.noaa.gov/data-
access/land-based-station-data/land-based-datasets/global-historical-
climatology-network-monthly-version-4.	This	is	just	a	100,000-row	sample	of	the
full	dataset,	which	is	also	available	in	the	repository.

How	to	do	it…
We	will	load	a	CSV	file	into	pandas	and	then	save	it	as	a	pickle	file	and	as	a
feather	file.	We	will	also	save	subsets	of	the	data	in	CSV	and	Excel	formats:

1.	 Import	pandas	and	pyarrow	and	adjust	the	display.
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Pyarrow	needs	to	be	imported	in	order	to	save	pandas	to	feather:

>>>	import	pandas	as	pd

>>>	import	pyarrow

2.	 Load	the	land	temperatures	CSV	file	into	pandas,	drop	rows	with	missing
data,	and	set	an	index:

>>>	landtemps	=

pd.read_csv('data/landtempssample.csv',

...					names=

['stationid','year','month','avgtemp','latitude',

...							'longitude','elevation','station','countryid','country'],

...					skiprows=1,

...					parse_dates=

[['month','year']],

...					low_memory=False)

>>>

>>>	landtemps.rename(columns=

{'month_year':'measuredate'},

inplace=True)

>>>	landtemps.dropna(subset=

['avgtemp'],	inplace=True)

>>>	landtemps.dtypes

measuredate				datetime64[ns]

stationid														object

avgtemp															float64
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latitude														float64

longitude													float64

elevation													float64

station																object

countryid														object

country																object

dtype:	object

>>>

landtemps.set_index(['measuredate','stationid'],

inplace=True)

3.	 Write	extreme	values	for	temperature	to	CSV	and	Excel	files.

Use	the	quantile	method	to	select	outlier	rows,	those	at	the	1-in-1,000
level	at	each	end	of	the	distribution:

>>>	extremevals	=

landtemps[(landtemps.avgtemp	<

landtemps.avgtemp.quantile(.001))

|	(landtemps.avgtemp	>

landtemps.avgtemp.quantile(.999))]

>>>	extremevals.shape

(171,	7)

>>>	extremevals.sample(7)

																									avgtemp		...		country

measuredate

stationid													...									
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2013-08-

01		QAM00041170				35.30		...				Qatar

2005-01-

01		RSM00024966			-40.09		...			Russia

1973-03-

01		CA002401200			-40.26		...			Canada

2007-06-

01		KU000405820				37.35		...			Kuwait

1987-07-

01		SUM00062700				35.50		...				Sudan

1998-02-

01		RSM00025325			-35.71		...			Russia

1968-12-

01		RSM00024329			-43.20		...			Russia

[7	rows	x	7	columns]

>>>

extremevals.to_excel('views/tempext.xlsx')

>>>

extremevals.to_csv('views/tempext.csv')

4.	 Save	to	pickle	and	feather	files.

The	index	needs	to	be	reset	in	order	to	save	a	feather	file:

>>>

landtemps.to_pickle('data/landtemps.pkl')
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>>>

landtemps.reset_index(inplace=True)

>>>

landtemps.to_feather("data/landtemps.ftr")

5.	 Load	the	pickle	and	feather	files	we	just	saved.

Notice	that	our	index	was	preserved	when	saving	and	loading	the	pickle	file:

>>>	landtemps	=

pd.read_pickle('data/landtemps.pkl')

>>>	landtemps.head(2).T

measuredate					2000-04-01		1940-05-

01

stationid						USS0010K01S

CI000085406

avgtemp															5.27							18.04

latitude													39.90						-18.35

longitude										-110.75						-70.33

elevation									2,773.70							58.00

station						INDIAN_CANYON							ARICA

countryid															US										CI

country						United

States							Chile

>>>	landtemps	=

pd.read_feather("data/landtemps.ftr")
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>>>	landtemps.head(2).T

																															0																				1

measuredate		2000-04-01

00:00:00		1940-05-01	00:00:00

stationid												USS0010K01S										CI000085406

avgtemp																					5.27																18.04

latitude																			39.90															-18.35

longitude																-110.75															-70.33

elevation															2,773.70																58.00

station												INDIAN_CANYON																ARICA

countryid																					US																			CI

country												United

States																Chile

The	previous	steps	demonstrate	how	to	serialize	pandas	data	frames	using	two
different	formats,	pickle	and	feather.

How	it	works...
Persisting	pandas	data	is	fairly	straightforward.	Data	frames	have	to_csv,

to_excel,	to_pickle,	and	to_feather	methods.
Pickling	preserves	our	index.

There's	more...

Telegram Channel @nettrain



The	advantage	of	storing	data	in	CSV	files	is	that	saving	it	uses	up	very	little
additional	memory.	The	disadvantage	is	that	writing	CSV	files	is	quite	slow	and

we	lose	important	metadata,	such	as	data	types.	(read_csv	can	often
figure	out	the	data	type	when	we	reload	the	file,	but	not	always.)	Pickle	files
keep	that	data,	but	can	burden	a	system	that	is	low	on	resources	when	serializing.
Feather	is	easier	on	resources,	and	can	be	easily	loaded	in	R	as	well	as	Python,
but	we	have	to	sacrifice	our	index	in	order	to	serialize.	Also,	the	authors	of
feather	make	no	promises	regarding	long-term	support.

You	may	have	noticed	that	I	do	not	make	a	recommendation	about	what	to	use
for	data	serialization	–	other	than	to	limit	your	persistence	of	full	datasets	to
project	milestones.	This	is	definitely	one	of	those	"right	tools	for	the	right	job"
kind	of	situations.	I	use	CSV	or	Excel	files	when	I	want	to	share	a	segment	of	a
file	with	colleagues	for	discussion.	I	use	feather	for	ongoing	Python	projects,
particularly	when	I	am	using	a	machine	with	sub-par	RAM	and	an	outdated	chip,
and	I	am	also	using	R.	When	I	am	wrapping	up	a	project,	I	pickle	the	data
frames.
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Chapter 	2: 	Anticipat ing	Data
Cleaning	Issues 	when	Import ing
HTML	and	JSON	into	pandas
This	chapter	continues	our	work	on	importing	data	from	a	variety	of	sources,	and
the	initial	checks	we	should	do	on	the	data	after	importing	it.	Gradually,	over	the
last	25	years,	data	analysts	have	found	that	they	increasingly	need	to	work	with
data	in	non-tabular,	semi-structured	forms.	Sometimes	they	even	create	and
persist	data	in	those	forms	themselves.	We	work	with	a	common	alternative	to
traditional	tabular	datasets	in	this	chapter,	JSON,	but	the	general	concepts	can	be
extended	to	XML	and	NoSQL	data	stores	such	as	MongoDB.	We	also	go	over
common	issues	that	occur	when	scraping	data	from	websites.

In	this	chapter,	we	will	work	through	the	following	recipes:

Importing	simple	JSON	data

Importing	more	complicated	JSON	data	from	an	API

Importing	data	from	web	pages

Persisting	JSON	data

Technical 	 requirements
The	code	and	notebooks	for	this	chapter	are	available	on	GitHub	at
https://github.com/PacktPublishing/Python-Data-Cleaning-Cookbook
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Import ing	s imple	JSON	data
JavaScript	Object	Notation	(JSON)	has	turned	out	to	be	an	incredibly	useful
standard	for	transferring	data	from	one	machine,	process,	or	node	to	another.
Often	a	client	sends	a	data	request	to	a	server,	upon	which	that	server	queries	the
data	in	the	local	storage	and	then	converts	it	from	something	like	a	SQL	Server
table	or	tables	into	JSON,	which	the	client	can	consume.	This	is	sometimes
complicated	further	by	the	first	server	(say,	a	web	server)	forwarding	the	request
to	a	database	server.	JSON	facilitates	this,	as	does	XML,	by	doing	the	following:

Being	readable	by	humans

Being	consumable	by	most	client	devices

Not	being	limited	in	structure

JSON	is	quite	flexible,	which	means	that	it	can	accommodate	just	about
anything.	The	structure	can	even	change	within	a	JSON	file,	so	different	keys
might	be	present	at	different	points.	For	example,	the	file	might	begin	with	some
explanatory	keys	that	have	a	very	different	structure	than	the	remaining	data
keys.	Or	some	keys	might	be	present	in	some	cases,	but	not	others.	We	go	over
some	approaches	for	dealing	with	that	messiness	(uh,	I	mean	flexibility).

Getting	ready
We	are	going	to	work	with	data	on	news	stories	about	political	candidates	in	this
recipe.	This	data	is	made	available	for	public	use	at
dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/0ZLHOK.	I
have	combined	the	JSON	files	there	into	one	file	and	randomly	selected	60,000
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news	stories	from	the	combined	data.	This	sample

(allcandidatenewssample.json)	is	available	in	the
GitHub	repository	of	this	book.

We	will	do	a	little	work	with	list	and	dictionary	comprehensions	in	this	recipe.
DataCamp	has	good	guides	to	list	comprehensions
(https://www.datacamp.com/community/tutorials/python-list-comprehension)
and	dictionary	comprehensions
(https://www.datacamp.com/community/tutorials/python-dictionary-
comprehension)	if	you	are	feeling	a	little	rusty.

How	to	do	it…
We	will	import	a	JSON	file	into	pandas	after	doing	some	data	checking	and
cleaning:

1.	 Import	the	json	and	pprint	libraries.

pprint	improves	the	display	of	the	lists	and	dictionaries	that	are	returned
when	we	load	JSON	data:

>>>	import	pandas	as	pd

>>>	import	numpy	as	np

>>>	import	json

>>>	import	pprint

>>>	from	collections	import	Counter

2.	 Load	the	JSON	data	and	look	for	potential	issues.
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Use	the	json	load	method	to	return	data	on	news	stories	about

political	candidates.	load	returns	a	list	of	dictionaries.	Use	len	to	get
the	size	of	the	list,	which	is	the	total	number	of	news	stories	in	this	case.	(Each
list	item	is	a	dictionary	with	keys	for	the	title,	source,	and	so	on,	and	their

respective	values.)	Use	pprint	to	display	the	first	two	dictionaries.	Get
the	value	from	the	source	key	for	the	first	list	item:

>>>	with

open('data/allcandidatenewssample.json')

as	f:

...			candidatenews	=	json.load(f)

...

>>>	len(candidatenews)

60000

>>>	pprint.pprint(candidatenews[0:2])

[{'date':	'2019-12-25	10:00:00',

		'domain':	'www.nbcnews.com',

		'panel_position':	1,

		'query':	'Michael	Bloomberg',

		'source':	'NBC	News',

		'story_position':	6,

		'time':	'18	hours	ago',

		'title':	'Bloomberg	cuts	ties	with

company	using	prison	inmates	to

make	'
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											'campaign	calls',

		'url':

'https://www.nbcnews.com/politics/2020-

election/bloomberg-cuts-ties-

company-using-prison-inmates-

make-campaign-calls-n1106971'},

{'date':	'2019-11-09	08:00:00',

		'domain':

'www.townandcountrymag.com',

		'panel_position':	1,

		'query':	'Amy	Klobuchar',

		'source':	'Town	&	Country

Magazine',

		'story_position':	3,

		'time':	'18	hours	ago',

		'title':	"Democratic	Candidates

React	to	Michael	Bloomberg's

Potential	Run",

		'url':

'https://www.townandcountrymag.com/society/politics/a29739854/michael-

bloomberg-democratic-

candidates-campaign-

reactions/'}]

>>>	pprint.pprint(candidatenews[0]

['source'])
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'NBC	News'

3.	 Check	for	differences	in	the	structure	of	the	dictionaries.

Use	Counter	to	check	for	any	dictionaries	in	the	list	with	fewer	than,	or
more	than,	the	nine	keys	that	is	normal.	Look	at	a	few	of	the	dictionaries	with
almost	no	data	(those	with	just	two	keys)	before	removing	them.	Confirm	that
the	remaining	list	of	dictionaries	has	the	expected	length	–	60000-
2382=57618:

>>>	Counter([len(item)	for	item	in

candidatenews])

Counter({9:	57202,	2:	2382,	10:	416})

>>>	pprint.pprint(next(item	for	item

in	candidatenews	if	len(item)

<9))

{'date':	'2019-09-11	18:00:00',

'reason':	'Not	collected'}

>>>	pprint.pprint(next(item	for	item

in	candidatenews	if

len(item)>9))

{'category':	'Satire',

'date':	'2019-08-21	04:00:00',

'domain':	'politics.theonion.com',

'panel_position':	1,

'query':	'John	Hickenlooper',

'source':	'Politics	|	The	Onion',
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'story_position':	8,

'time':	'4	days	ago',

'title':	''And	Then	There	Were	23,'

Says	Wayne	Messam	Crossing	Out

'

										'Hickenlooper	Photo	\n'

										'In	Elaborate	Grid	Of

Rivals',

'url':

'https://politics.theonion.com/and-

then-there-were-23-says-wayne-

messam-crossing-ou-1837311060'}

>>>	pprint.pprint([item	for	item	in

candidatenews	if	len(item)==2]

[0:10])

[{'date':	'2019-09-11	18:00:00',

'reason':	'Not	collected'},

{'date':	'2019-07-24	00:00:00',

'reason':	'No	Top	stories'},

...

{'date':	'2019-01-03	00:00:00',

'reason':	'No	Top	stories'}]

>>>	candidatenews	=	[item	for	item	in

candidatenews	if	len(item)>2]

>>>	len(candidatenews)
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57618

4.	 Generate	counts	from	the	JSON	data.

Get	the	dictionaries	just	for	Politico	(a	website	that	covers	political	news)	and
display	a	couple	of	dictionaries:

>>>	politico	=	[item	for	item	in

candidatenews	if	item["source"]

==	"Politico"]

>>>	len(politico)

2732

>>>	pprint.pprint(politico[0:2])

[{'date':	'2019-05-18	18:00:00',

		'domain':	'www.politico.com',

		'panel_position':	1,

		'query':	'Marianne	Williamson',

		'source':	'Politico',

		'story_position':	7,

		'time':	'1	week	ago',

		'title':	'Marianne	Williamson

reaches	donor	threshold	for	Dem

debates',

		'url':

'https://www.politico.com/story/2019/05/09/marianne-

williamson-2020-election-

1315133'},
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{'date':	'2018-12-27	06:00:00',

		'domain':	'www.politico.com',

		'panel_position':	1,

		'query':	'Julian	Castro',

		'source':	'Politico',

		'story_position':	1,

		'time':	'1	hour	ago',

		'title':	"O'Rourke	and	Castro	on

collision	course	in	Texas",

		'url':

'https://www.politico.com/story/2018/12/27/orourke-

julian-castro-collision-texas-

election-1073720'}]

5.	 Get	the	source	data	and	confirm	that	it	has	the	anticipated	length.

Show	the	first	few	items	in	the	new	sources	list.	Generate	a	count	of
news	stories	by	source	and	display	the	10	most	popular	sources.	Notice	that

stories	from	The	Hill	can	have	TheHill	(without	a	space)	or	The

Hill	as	the	value	for	source:

>>>	sources	=	[item.get('source')	for

item	in	candidatenews]

>>>	type(sources)

<class	'list'>

>>>	len(sources)
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57618

>>>	sources[0:5]

['NBC	News',	'Town	&	Country

Magazine',	'TheHill',

'CNBC.com',	'Fox	News']

>>>

pprint.pprint(Counter(sources).most_common(10))

[('Fox	News',	3530),

('CNN.com',	2750),

('Politico',	2732),

('TheHill',	2383),

('The	New	York	Times',	1804),

('Washington	Post',	1770),

('Washington	Examiner',	1655),

('The	Hill',	1342),

('New	York	Post',	1275),

('Vox',	941)]

6.	 Fix	any	errors	in	the	values	in	the	dictionary.

Fix	the	source	values	for	The	Hill.	Notice	that	The	Hill
is	now	the	most	frequent	source	for	news	stories:

>>>	for	newsdict	in	candidatenews:

...					newsdict.update((k,	"The

Hill")	for	k,	v	in
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newsdict.items()

...						if	k	==	"source"	and	v	==

"TheHill")

...

>>>	sources	=	[item.get('source')	for

item	in	candidatenews]

>>>

pprint.pprint(Counter(sources).most_common(10))

[('The	Hill',	3725),

('Fox	News',	3530),

('CNN.com',	2750),

('Politico',	2732),

('The	New	York	Times',	1804),

('Washington	Post',	1770),

('Washington	Examiner',	1655),

('New	York	Post',	1275),

('Vox',	941),

('Breitbart',	799)]

7.	 Create	a	pandas	DataFrame.

Pass	the	JSON	data	to	the	pandas	DataFrame	method.	Convert	the

date	column	to	a	datetime	data	type:

>>>	candidatenewsdf	=

pd.DataFrame(candidatenews)
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>>>	candidatenewsdf.dtypes

title													object

url															object

source												object

time														object

date														object

query													object

story_position					int64

panel_position				object

domain												object

category										object

dtype:	object

8.	 Confirm	that	we	are	getting	the	expected	values	for	source.

Also,	rename	the	date	column:

>>>	candidatenewsdf.rename(columns=

{'date':'storydate'},

inplace=True)

>>>	candidatenewsdf.storydate	=

candidatenewsdf.storydate.astype('datetime64[ns]')

>>>	candidatenewsdf.shape

(57618,	10)

>>>

candidatenewsdf.source.value_counts(sort=True).head(10)
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The	Hill															3725

Fox	News															3530

CNN.com																2750

Politico															2732

The	New	York	Times					1804

Washington	Post								1770

Washington	Examiner				1655

New	York	Post										1275

Vox																					941

Breitbart															799

Name:	source,	dtype:	int64

We	now	have	a	pandas	DataFrame	with	only	the	news	stories	where	there	is

meaningful	data,	and	with	the	values	for	source	fixed.

How	it	works…
The	json.load	method	returns	a	list	of	dictionaries.	This	makes	it
possible	to	use	a	number	of	familiar	tools	when	working	with	this	data:	list
methods,	slicing,	list	comprehensions,	dictionary	updates,	and	so	on.	There	are
times,	maybe	when	you	just	have	to	populate	a	list	or	count	the	number	of
individuals	in	a	given	category,	when	there	is	no	need	to	use	pandas.

In	steps	2	to	6,	we	use	list	methods	to	do	many	of	the	same	checks	we	have	done

with	pandas	in	previous	recipes.	In	step	3	we	use	Counter	with	a	list
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comprehension	(Counter([len(item)	for	item	in

candidatenews]))	to	get	the	number	of	keys	in	each	dictionary.
This	tells	us	that	there	are	2,382	dictionaries	with	just	2	keys	and	416	with	10.

We	use	next	to	look	for	an	example	of	dictionaries	with	fewer	than	9	keys	or
more	than	9	keys	to	get	a	sense	of	the	structure	of	those	items.	We	use	slicing	to
show	10	dictionaries	with	2	keys	to	see	if	there	is	any	data	in	those	dictionaries.
We	then	select	only	those	dictionaries	with	more	than	2	keys.

In	step	4	we	create	a	subset	of	the	list	of	dictionaries,	one	that	just	has

source	equal	to	Politico,	and	take	a	look	at	a	couple	of	items.	We

then	create	a	list	with	just	the	source	data	and	use	Counter	to	list	the	10
most	common	sources	in	step	5.

Step	6	demonstrates	how	to	replace	key	values	conditionally	in	a	list	of

dictionaries.	In	this	case,	we	update	the	key	value	to	The	Hill	whenever

key	(k)	is	source	and	value	(v)	is	TheHill.	The

for	k,	v	in	newsdict.items()	section	is	the	unsung
hero	of	this	line.	It	loops	through	all	key/value	pairs	for	all	dictionaries	in

candidatenews.

It	is	easy	to	create	a	pandas	DataFrame	by	passing	the	list	of	dictionaries	to	the

pandas	DataFrame	method.	We	do	this	in	step	7.	The	main	complication
is	that	we	need	to	convert	the	date	column	from	a	string	to	a	date,	since	dates	are
just	strings	in	JSON.

There's	more…
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In	steps	5	and	6	we	use	item.get('source')	instead	of

item['source'].	This	is	handy	when	there	might	be	missing	keys

in	a	dictionary.	get	returns	None	when	the	key	is	missing,	but	we	can	use
an	optional	second	argument	to	specify	a	value	to	return.

I	renamed	the	date	column	to	storydate	in	step	8.	This	is	not

necessary,	but	is	a	good	idea.	Not	only	does	date	not	tell	you	anything	about
what	the	dates	actually	represent,	it	is	also	so	generic	a	column	name	that	it	is
bound	to	cause	problems	at	some	point.

The	news	stories	data	fits	nicely	into	a	tabular	structure.	It	makes	sense	to
represent	each	list	item	as	one	row,	and	the	key/value	pairs	as	columns	and
column	values	for	that	row.	There	are	no	significant	complications,	such	as	key

values	that	are	themselves	lists	of	dictionaries.	Imagine	an	authors	key
for	each	story	with	a	list	item	for	each	author	as	the	key	value,	and	that	list	item
is	a	dictionary	of	information	about	the	author.	This	is	not	at	all	unusual	when
working	with	JSON	data	in	Python.	The	next	recipe	shows	how	to	work	with
data	structured	in	this	way.

Import ing	more	complicated
JSON	data 	 f rom	an	API
In	the	previous	recipe,	we	discussed	one	significant	advantage	(and	challenge)	of
working	with	JSON	data	–	its	flexibility.	A	JSON	file	can	have	just	about	any
structure	its	authors	can	imagine.	This	often	means	that	this	data	does	not	have
the	tabular	structure	of	the	data	sources	we	have	discussed	so	far,	and	that
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pandas	DataFrames	have.	Often,	analysts	and	application	developers	use	JSON
precisely	because	it	does	not	insist	on	a	tabular	structure.	I	know	I	do!

Retrieving	data	from	multiple	tables	often	requires	us	to	do	a	one-to-many
merge.	Saving	that	data	to	one	table	or	file	means	duplicating	data	on	the	"one"
side	of	the	one-to-many	relationship.	For	example,	student	demographic	data	is
merged	with	data	on	the	courses	studied,	and	the	demographic	data	is	repeated
for	each	course.	With	JSON,	duplication	is	not	required	to	capture	these	items	of
data	in	one	file.	We	can	have	data	on	the	courses	studied	nested	within	the	data
for	each	student.

But	doing	analysis	with	JSON	structured	in	this	way	will	eventually	require	us	to
either:	1)	manipulate	the	data	in	a	very	different	way	than	we	are	used	to	doing;
or	2)	convert	the	JSON	to	a	tabular	form.	We	examine	the	first	approach	in	the
Classes	that	handle	non-tabular	data	structures	recipe	in	Chapter	10,	User-
Defined	Functions	and	Classes	to	Automate	Data	Cleaning.	This	recipe	takes	the
second	approach.	It	uses	a	very	handy	tool	for	converting	selected	nodes	of

JSON	to	a	tabular	structure	–	json_normalize.

We	first	use	an	API	to	get	JSON	data	because	that	is	how	JSON	is	frequently
consumed.	One	advantage	of	retrieving	the	data	with	an	API,	rather	than
working	from	a	file	we	have	saved	locally,	is	that	it	is	easier	to	rerun	our	code
when	the	source	data	is	refreshed.

Getting	ready
This	recipe	assumes	you	have	the	requests	and	pprint	libraries
already	installed.	If	they	are	not	installed,	you	can	install	them	with	pip.	From
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the	terminal	(or	PowerShell	in	Windows),	enter	pip	install

requests	and	pip	install	pprint.

The	following	is	the	structure	of	the	JSON	file	that	is	created	when	using	the

collections	API	of	the	Cleveland	Museum	of	Art.	There	is	a	helpful	info

section	at	the	beginning,	but	we	are	interested	in	the	data	section.	This	data
does	not	fit	nicely	into	a	tabular	data	structure.	There	may	be	several

citations	objects	and	several	creators	objects	for	each
collection	object.	I	have	abbreviated	the	JSON	file	to	save	space:

{"info":	{	"total":	778,	"parameters":

{"african_american_artists":	""

}},

"data":	[

{

"id":	165157,

"accession_number":	"2007.158",

"title":	"Fulton	and	Nostrand",

"creation_date":	"1958",

"citations":	[

		{

			"citation":	"Annual	Exhibition:

Sculpture,	Paintings...",

			"page_number":	"Unpaginated,	[8],

[12]",

			"url":	null
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			},

		{

			"citation":	"\"Moscow	to	See	Modern

U.S.	Art,\"<em>	New	York...",			

			"page_number":	"P.	60",

			"url":	null

		}]

"creators":	[

						{

					"description":	"Jacob	Lawrence

(American,	1917-2000)",

					"extent":	null,

					"qualifier":	null,

					"role":	"artist",

					"birth_year":	"1917",

					"death_year":	"2000"

					}

		]

}

NOTE
The	API	used	in	this	recipe	is	provided	by	the	Cleveland	Museum	of	Art.	It	is
available	for	public	use	at	https://openaccess-api.clevelandart.org/.
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How	to	do	it...
Create	a	DataFrame	from	the	museum's	collections	data	with	one	row	for	each

citation,	and	the	title	and	creation_date	duplicated:

1.	 Import	the	json,	requests,	and	pprint	libraries.

We	need	the	requests	library	to	use	an	API	to	retrieve	JSON	data.

pprint	improves	the	display	of	lists	and	dictionaries:

>>>	import	pandas	as	pd

>>>	import	numpy	as	np

>>>	import	json

>>>	import	pprint

>>>	import	requests

2.	 Use	an	API	to	load	the	JSON	data.

Make	a	get	request	to	the	collections	API	of	the	Cleveland	Museum	of	Art.
Use	the	query	string	to	indicate	that	you	just	want	collections	from	African-
American	artists.	Display	the	first	collection	item.	I	have	truncated	the	output
for	the	first	item	to	save	space:

>>>	response	=

requests.get("https://openaccess-

api.clevelandart.org/api/artworks/?

african_american_artists")

>>>	camcollections	=

json.loads(response.text)
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>>>

print(len(camcollections['data']))

778

>>>

pprint.pprint(camcollections['data']

[0])

{'accession_number':	'2007.158',

'catalogue_raisonne':	None,

'citations':	[{'citation':	'Annual

Exhibition:	Sculpture...',

																'page_number':

'Unpaginated,	[8],[12]',

																'url':	None},

															{'citation':	'"Moscow

to	See	Modern	U.S....',

																'page_number':	'P.

60',

																'url':	None}]

'collection':	'American	-	Painting',

'creation_date':	'1958',

'creators':	[{'biography':	'Jacob

Lawrence	(born	1917)...',

															'birth_year':	'1917',
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															'description':	'Jacob

Lawrence	(American...)',

															'role':	'artist'}],

'type':	'Painting'}

3.	 Flatten	the	JSON	data.

Create	a	DataFrame	from	the	JSON	data	using	the

json_normalize	method.	Indicate	that	the	number	of	citations

will	determine	the	number	of	rows,	and	that	accession_number,

title,	creation_date,	collection,

creators,	and	type	will	be	repeated.	Observe	that	the	data	has
been	flattened	by	displaying	the	first	two	observations,	transposing	them	with

the	.T	option	to	make	it	easier	to	view:

>>>

camcollectionsdf=pd.json_normalize(camcollections['data'],/

'citations',

['accession_number','title','creation_date',/

'collection','creators','type'])

>>>	camcollectionsdf.head(2).T

																										0																							1

citation								Annual

Exhibiti...		"Moscow	to	See

Modern...

page_number											Unpaginated,																					P.

60
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url																										None																							None

accession_number									2007.158																			2007.158

title												Fulton	and

No...											Fulton	and

No...

creation_date																1958																							1958

collection							American	-

Pa...											American	-

Pa...

creators			[{'description':

'J...					[{'description':

'J...

type																					Painting																			Painting

4.	 Pull	the	birth_year	value	from	creators:

>>>	creator	=

camcollectionsdf[:1].creators[0]

>>>	type(creator[0])

<class	'dict'>

>>>	pprint.pprint(creator)

[{'biography':	'Jacob	Lawrence	(born

1917)	has	been	a	prominent

art...',

		'birth_year':	'1917',

		'death_year':	'2000',
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		'description':	'Jacob	Lawrence

(American,	1917-2000)',

		'extent':	None,

		'name_in_original_language':	None,

		'qualifier':	None,

		'role':	'artist'}]

>>>	camcollectionsdf['birthyear']	=

camcollectionsdf.\

...			creators.apply(lambda	x:	x[0]

['birth_year'])

>>>

camcollectionsdf.birthyear.value_counts().\

...			sort_index().head()

1821				18

1886					2

1888					1

1892				13

1899				17

Name:	birthyear,	dtype:	int64

This	gives	us	a	pandas	DataFrame	with	one	row	for	each	citation	for

each	collection	item,	with	the	collection	information	(title,

creation_date,	and	so	on)	duplicated.
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How	it	works…
We	work	with	a	much	more	interesting	JSON	file	in	this	recipe	than	in	the
previous	one.	Each	object	in	the	JSON	file	is	an	item	in	the	collection	of	the
Cleveland	Museum	of	Art.	Nested	within	each	collection	item	are	one	or	more
citations.	The	only	way	to	capture	this	information	in	a	tabular	DataFrame	is	to
flatten	it.	There	are	also	one	or	more	dictionaries	for	creators	of	the	collection
item	(the	artist	or	artists).	That	dictionary	(or	dictionaries)	contains	the

birth_year	value	that	we	want.

We	want	one	row	for	every	citation	for	all	collection	items.	To	understand	this,
imagine	that	we	are	working	with	relational	data	and	have	a	collections	table	and
a	citations	table,	and	that	we	are	doing	a	one-to-many	merge	from	collections	to

citations.	We	do	something	similar	with	json_normalize	by	using

citations	as	the	second	parameter.	That	tells	json_normalize	to
create	one	row	for	each	citation	and	use	the	key	values	in	each	citation

dictionary	–	for	citation,	page_number,	and	url	–	as	data
values.

The	third	parameter	in	the	call	to	json_normalize	has	the	list	of
column	names	for	the	data	that	will	be	repeated	with	each	citation.	Notice	that

access_number,	title,	creation_date,

collection,	creators,	and	type	are	repeated	in

observations	one	and	two.	Citation	and	page_number	change.

(url	is	the	same	value	for	the	first	and	second	citations.	Otherwise,	it	would
also	change.)
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This	still	leaves	us	with	the	problem	of	the	creators	dictionaries	(there	can	be

more	than	one	creator).	When	we	ran	json_normalize	it	grabbed
the	value	for	each	key	we	indicated	(in	the	third	parameter)	and	stored	it	in	the
data	for	that	column	and	row,	whether	that	value	was	simple	text	or	a	list	of

dictionaries,	as	is	the	case	for	creators.	We	take	a	look	at	the	first	(and

in	this	case,	only)	creators	item	for	the	first	collections	row	in	step	10,

naming	it	creator.	(Note	that	the	creators	list	is	duplicated	across

all	citations	for	a	collection	item,	just	as	the	values	for	title,

creation_date,	and	so	on	are.)

We	want	the	birth	year	for	the	first	creator	for	each	collection	item,	which	can	be

found	at	creator[0]['birth_year'].	To	create	a

birthyear	series	using	this,	we	use	apply	and	a	lambda
function:

>>>	camcollectionsdf['birthyear']	=

camcollectionsdf.\

...			creators.apply(lambda	x:	x[0]

['birth_year'])

We	take	a	closer	look	at	lambda	functions	in	Chapter	6,	Cleaning	and	Exploring

Data	with	Series	Operations.	Here,	it	is	helpful	to	think	of	the	x	as	representing

the	creators	series,	so	x[0]	gives	us	the	list	item	we	want,

creators[0].	We	grab	the	value	from	the	birth_year	key.

There's	more…
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You	may	have	noticed	that	we	left	out	some	of	the	JSON	returned	by	the	API	in

our	call	to	json_normalize.	The	first	parameter	that	we	passed	to

json_normalize	was

camcollections['data'].	Effectively,	we	ignore	the

info	object	at	the	beginning	of	the	JSON	data.	The	information	we	want

does	not	start	until	the	data	object.	This	is	not	very	different	conceptually

from	the	skiprows	parameter	in	the	second	recipe	of	the	previous	chapter.
There	is	sometimes	metadata	like	this	at	the	beginning	of	JSON	files.

See	also
The	preceding	recipe	demonstrates	some	useful	techniques	for	doing	data
integrity	checks	without	pandas,	including	list	operations	and	comprehensions.
Those	are	all	relevant	for	the	data	in	this	recipe	as	well.

Import ing	data 	 f rom	web	pages
We	use	Beautiful	Soup	in	this	recipe	to	scrape	data	from	a	web	page	and	load
that	data	into	pandas.	Web	scraping	is	very	useful	when	there	is	data	at	a
website	that	is	updated	regularly,	but	there	is	no	API.	We	can	rerun	our	code	to
generate	new	data	whenever	the	page	is	updated.

Unfortunately,	the	web	scrapers	we	build	can	be	broken	when	the	structure	of	the
targeted	page	changes.	That	is	less	likely	to	happen	with	APIs	because	they	are
designed	for	data	exchange,	and	carefully	curated	with	that	end	in	mind.	The
priority	for	most	web	designers	is	the	quality	of	the	display	of	information,	not
the	reliability	and	ease	of	data	exchange.	This	causes	data	cleaning	challenges
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unique	to	web	scraping,	including	HTML	elements	that	house	the	data	being	in
surprising	and	changing	locations,	formatting	tags	that	obfuscate	the	underlying
data,	and	explanatory	text	that	aid	data	interpretation	being	difficult	to	retrieve.
In	addition	to	these	challenges,	scraping	presents	data	cleaning	issues	that	are
familiar,	such	as	changing	data	types	in	columns,	less	than	ideal	headings,	and
missing	values.	We	deal	with	data	issues	that	occur	most	frequently	in	this
recipe.

Getting	ready
You	will	need	Beautiful	Soup	installed	to	run	the	code	in	this	recipe.	You	can

install	it	with	pip	by	entering	pip	install

beautifulsoup4	in	a	terminal	window	or	Windows	PowerShell.

We	will	scrape	data	from	a	web	page,	find	the	following	table	in	that	page,	and
load	it	into	a	pandas	DataFrame:

Figure	2.1	–	COVID-19	data	from	six	countries
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NOTE
I	created	this	web	page,
http://www.alrb.org/datacleaning/covidcaseoutliers.html,	based	on	COVID-19
data	for	public	use	from	Our	World	in	Data,	available	at
https://ourworldindata.org/coronavirus-source-data.

How	to	do	it…
We	scrape	the	COVID	data	from	the	website	and	do	some	routine	data	checks:

1.	 Import	the	pprint,	requests,	and	BeautifulSoup
libraries:

>>>	import	pandas	as	pd

>>>	import	numpy	as	np

>>>	import	json

>>>	import	pprint

>>>	import	requests

>>>	from	bs4	import	BeautifulSoup

2.	 Parse	the	web	page	and	get	the	header	row	of	the	table.

Use	Beautiful	Soup's	find	method	to	get	the	table	we	want	and	then	use

find_all	to	retrieve	the	elements	nested	within	the	th	elements	for

that	table.	Create	a	list	of	column	labels	based	on	the	text	of	the	th	rows:

>>>	webpage	=

requests.get("http://www.alrb.org/datacleaning/covidcaseoutliers.html")
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>>>	bs	=	BeautifulSoup(webpage.text,

'html.parser')

>>>	theadrows	=	bs.find('table',

{'id':'tblDeaths'}).thead.find_all('th')

>>>	type(theadrows)

<class	'bs4.element.ResultSet'>

>>>	labelcols	=	[j.get_text()	for	j

in	theadrows]

>>>	labelcols[0]	=	"rowheadings"

>>>	labelcols

['rowheadings',	'Cases',	'Deaths',

'Cases	per	Million',	'Deaths

per	Million',	'population',

'population_density',

'median_age',	'gdp_per_capita',

'hospital_beds_per_100k']

3.	 Get	the	data	from	the	table	cells.

Find	all	of	the	table	rows	for	the	table	we	want.	For	each	table	row,	find	the

th	element	and	retrieve	the	text.	We	will	use	that	text	for	our	row	labels.

Also,	for	each	row,	find	all	the	td	elements	(the	table	cells	with	the	data)	and

save	text	from	all	of	them	in	a	list.	This	gives	us	datarows,	which	has
all	the	numeric	data	in	the	table.	(You	can	confirm	that	it	matches	the	table

from	the	web	page.)	We	then	insert	the	labelrows	list	(which	has	the

row	headings)	at	the	beginning	of	each	list	in	datarows:
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>>>	rows	=	bs.find('table',

{'id':'tblDeaths'}).tbody.find_all('tr')

>>>	datarows	=	[]

>>>	labelrows	=	[]

>>>	for	row	in	rows:

...			rowlabels	=

row.find('th').get_text()

...			cells	=	row.find_all('td',

{'class':'data'})

...			if	(len(rowlabels)>3):

...					labelrows.append(rowlabels)

...			if	(len(cells)>0):

...					cellvalues	=	[j.get_text()

for	j	in	cells]

...					datarows.append(cellvalues)

...

>>>	pprint.pprint(datarows[0:2])

[['9,394',	'653',	'214',	'15',

'43,851,043',	'17',	'29',

'13,914',	'1.9'],

['16,642',	'668',	'1848',	'74',

'9,006,400',	'107',	'44',

'45,437',	'7.4']]

>>>	pprint.pprint(labelrows[0:2])
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['Algeria',	'Austria']

>>>

>>>	for	i	in	range(len(datarows)):

...			datarows[i].insert(0,

labelrows[i])

...

>>>	pprint.pprint(datarows[0:1])

[['Algeria','9,394','653','214','15','43,851,043','17','29','13,914','1.9']]

4.	 Load	the	data	into	pandas.

Pass	the	datarows	list	to	the	DataFrame	method	of	pandas.
Notice	that	all	data	is	read	into	pandas	with	the	object	data	type,	and	that	some
data	has	values	that	cannot	be	converted	into	numeric	values	in	their	current
form	(due	to	the	commas):

>>>	totaldeaths	=

pd.DataFrame(datarows,

columns=labelcols)

>>>	totaldeaths.head()

		rowheadings				Cases	Deaths		...

median_age	gdp_per_capita		\

0					Algeria				9,394				653		...									29									13,914			

1					Austria			16,642				668		...									44									45,437			

2		Bangladesh			47,153				650		...									28										3,524			

3					Belgium			58,381			9467		...									42									42,659			
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4						Brazil		514,849		29314		...									34									14,103			

>>>	totaldeaths.dtypes

rowheadings															object

Cases																					object

Deaths																				object

Cases	per	Million									object

Deaths	per	Million								object

population																object

population_density								object

median_age																object

gdp_per_capita												object

hospital_beds_per_100k				object

dtype:	object

5.	 Fix	the	column	names	and	convert	the	data	to	numeric	values.

Remove	spaces	from	column	names.	Remove	all	non-numeric	data	from	the

first	columns	with	data,	including	the	commas	(str.replace("

[^0-9]","").	Convert	to	numeric	values,	except	for	the

rowheadings	column:

>>>	totaldeaths.columns	=

totaldeaths.columns.str.replace("

",	"_").str.lower()

>>>	for	col	in

totaldeaths.columns[1:-1]:
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...			totaldeaths[col]	=

totaldeaths[col].\

...					str.replace("[^0-

9]","").astype('int64')

...

>>>

totaldeaths['hospital_beds_per_100k']

=

totaldeaths['hospital_beds_per_100k'].astype('float')

>>>	totaldeaths.head()

		rowheadings			cases		deaths		...		median_age		gdp_per_capita		\

0					Algeria				9394					653		...										29											13914			

1					Austria			16642					668		...										44											45437			

2		Bangladesh			47153					650		...										28												3524			

3					Belgium			58381				9467		...										42											42659			

4						Brazil		514849			29314		...										34											14103			

>>>	totaldeaths.dtypes

rowheadings																object

cases																							int64

deaths																						int64

cases_per_million											int64

deaths_per_million										int64

population																		int64

population_density										int64
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median_age																		int64

gdp_per_capita														int64

hospital_beds_per_100k				float64

dtype:	object

We	have	now	created	a	pandas	DataFrame	from	an	html	table.

How	it	works…
Beautiful	Soup	is	a	very	useful	tool	for	finding	specific	HTML	elements	in	a
web	page	and	retrieving	text	from	them.	You	can	get	one	HTML	element	with

find	and	get	one	or	more	with	find_all.	The	first	argument	for	both

find	and	find_all	is	the	HTML	element	to	get.	The	second	argument
takes	a	Python	dictionary	of	attributes.	You	can	retrieve	text	from	all	of	the

HTML	elements	you	find	with	get_text.

Some	amount	of	looping	is	usually	necessary	to	process	the	elements	and	text,	as
with	step	2	and	step	3.	These	two	statements	in	step	2	are	fairly	typical:

>>>	theadrows	=	bs.find('table',

{'id':'tblDeaths'}).thead.find_all('th')

>>>	labelcols	=	[j.get_text()	for	j	in

theadrows]

The	first	statement	finds	all	the	th	elements	we	want	and	creates	a	Beautiful

Soup	result	set	called	theadrows	from	the	elements	it	found.	The	second

statement	iterates	over	the	theadrows	Beautiful	Soup	result	set	using	the
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get_text	method	to	get	the	text	from	each	element,	and	stores	it	in	the

labelcols	list.

Step	3	is	a	little	more	involved,	but	makes	use	of	the	same	Beautiful	Soup

methods.	We	find	all	of	the	table	rows	(tr)	in	the	target	table	(rows	=

bs.find('table',

{'id':'tblDeaths'}).tbody.find_all('tr')

We	then	iterate	over	each	of	those	rows,	finding	the	th	element	and	getting	the

text	in	that	element	(rowlabels	=

row.find('th').get_text()).	We	also	find	all	of	the

table	cells	(td)	for	each	row	(cells	=

row.find_all('td',	{'class':'data'})	and

get	the	text	from	all	table	cells	(cellvalues	=

[j.get_text()	for	j	in	cells]).	Note	that	this

code	is	dependent	on	the	class	of	the	td	elements	being	data.	Finally,	we

insert	the	row	labels	we	get	from	the	th	elements	at	the	beginning	of	each	list

in	datarows:

>>>	for	i	in	range(len(datarows)):

...			datarows[i].insert(0,

labelrows[i])

In	step	4,	we	use	the	DataFrame	method	to	load	the	list	we	created	in
steps	2	and	3	into	pandas.	We	then	do	some	cleaning	similar	to	what	we	have

done	in	previous	recipes	in	this	chapter.	We	use	string	replace	to
remove	spaces	from	column	names	and	to	remove	all	non-numeric	data,
including	commas,	from	what	are	otherwise	valid	numeric	values.	We	convert	all

columns,	except	for	the	rowheadings	column,	to	numeric.
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There's	more…
Our	scraping	code	is	dependent	on	several	aspects	of	the	web	page's	structure

not	changing:	the	ID	of	the	main	table,	the	presence	of	th	tags	with	column

and	row	labels,	and	the	td	elements	continuing	to	have	their	class	equal	to
data.	The	good	news	is	that	if	the	structure	of	the	web	page	does	change,	this

will	likely	only	affect	the	find	and	find_all	calls.	The	rest	of	the
code	would	not	need	to	change.

Persis t ing	JSON	data
There	are	several	reasons	why	we	might	want	to	serialize	a	JSON	file:

We	may	have	retrieved	the	data	with	an	API,	but	need	to	keep	a	snapshot	of
the	data.

The	data	in	the	JSON	file	is	relatively	static	and	informs	our	data	cleaning	and
analysis	over	multiple	phases	of	a	project.

We	might	decide	that	the	flexibility	of	a	schema-less	format	such	as	JSON
helps	us	solve	many	data	cleaning	and	analysis	problems.

It	is	worth	highlighting	this	last	reason	to	use	JSON	–	that	it	can	solve	many	data
problems.	Although	tabular	data	structures	clearly	have	many	benefits,
particularly	for	operational	data,	they	are	often	not	the	best	way	to	store	data	for
analysis	purposes.	In	preparing	data	for	analysis,	a	substantial	amount	of	time	is
spent	either	merging	data	from	different	tables	or	dealing	with	data	redundancy
when	working	with	flat	files.	Not	only	are	these	processes	time	consuming,	but
every	merge	or	reshaping	leaves	the	door	open	to	a	data	error	of	broad	scope.
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This	can	also	mean	that	we	end	up	paying	too	much	attention	to	the	mechanics
of	manipulating	data	and	too	little	to	the	conceptual	issues	at	the	core	of	our
work.

We	return	to	the	Cleveland	Museum	of	Art	collections	data	in	this	recipe.	There
are	at	least	three	possible	units	of	analysis	for	this	data	file	–	the	collection	item
level,	the	creator	level,	and	the	citation	level.	JSON	allows	us	to	nest	citations
and	creators	within	collections.	(You	can	examine	the	structure	of	the	JSON	file
in	the	Getting	ready	section	of	this	recipe.)	This	data	cannot	be	persisted	in	a
tabular	structure	without	flattening	the	file,	which	we	did	in	an	earlier	recipe	in
this	chapter.	In	this	recipe,	we	will	use	two	different	methods	to	persist	JSON
data,	each	with	its	own	advantages	and	disadvantages.

Getting	ready
We	will	be	working	with	data	on	the	Cleveland	Museum	of	Art's	collection	of
works	by	African-American	artists.	The	following	is	the	structure	of	the	JSON
data	returned	by	the	API.	It	has	been	abbreviated	to	save	space:

{"info":	{	"total":	778,	"parameters":

{"african_american_artists":	""

}},

"data":	[

{

"id":	165157,

"accession_number":	"2007.158",

"title":	"Fulton	and	Nostrand",
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"creation_date":	"1958",

"citations":	[

		{

			"citation":	"Annual	Exhibition:

Sculpture,	Paintings...",

			"page_number":	"Unpaginated,	[8],

[12]",

			"url":	null

			},

		{

			"citation":	"\"Moscow	to	See	Modern

U.S.	Art,\"<em>	New	York...",			

			"page_number":	"P.	60",

			"url":	null

		}]

"creators":	[

						{

					"description":	"Jacob	Lawrence

(American,	1917-2000)",

					"extent":	null,

					"qualifier":	null,

					"role":	"artist",

					"birth_year":	"1917",
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					"death_year":	"2000"

					}

		]

}

How	to	do	it...
We	will	serialize	the	JSON	data	using	two	different	methods:

1.	 Load	the	pandas,	json,	pprint,	requests,	and

msgpack	libraries:

>>>	import	pandas	as	pd

>>>	import	json

>>>	import	pprint

>>>	import	requests

>>>	import	msgpack

2.	 Load	the	JSON	data	from	an	API.	I	have	abbreviated	the	JSON	output:

>>>	response	=

requests.get("https://openaccess-

api.clevelandart.org/api/artworks/?

african_american_artists")

>>>	camcollections	=

json.loads(response.text)

>>>

print(len(camcollections['data']))
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778

>>>

pprint.pprint(camcollections['data']

[0])

{'accession_number':	'2007.158',

'catalogue_raisonne':	None,

'citations':	[{'citation':	'Annual

Exhibition:	Sculpture...',

																'page_number':

'Unpaginated,	[8],[12]',

																'url':	None},

															{'citation':	'"Moscow

to	See	Modern	U.S....',

																'page_number':	'P.

60',

																'url':	None}]

'collection':	'American	-	Painting',

'creation_date':	'1958',

'creators':	[{'biography':	'Jacob

Lawrence	(born	1917)...',

															'birth_year':	'1917',

															'description':	'Jacob

Lawrence	(American...',

															'role':	'artist'}],
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'type':	'Painting'}

3.	 Save	and	reload	the	JSON	file	using	Python's	json	library.

Persist	the	JSON	data	in	human-readable	form.	Reload	it	from	the	saved	file

and	confirm	that	it	worked	by	retrieving	the	creators	data	from	the
first	collections	item:

>>>	with

open("data/camcollections.json","w")

as	f:

...			json.dump(camcollections,	f)

...

>>>	with

open("data/camcollections.json","r")

as	f:

...			camcollections	=	json.load(f)

...

>>>

pprint.pprint(camcollections['data']

[0]['creators'])

[{'biography':	'Jacob	Lawrence	(born

1917)	has	been	a	prominent

artist	since...'

		'birth_year':	'1917',

		'description':	'Jacob	Lawrence

(American,	1917-2000)',
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		'role':	'artist'}]

4.	 Save	and	reload	the	JSON	file	using	msgpack:

>>>	with

open("data/camcollections.msgpack",

"wb")	as	outfile:

...					packed	=

msgpack.packb(camcollections)

...					outfile.write(packed)

...

1586507

>>>	with

open("data/camcollections.msgpack",

"rb")	as	data_file:

...					msgbytes	=	data_file.read()

...

>>>	camcollections	=

msgpack.unpackb(msgbytes)

>>>

pprint.pprint(camcollections['data']

[0]['creators'])

[{'biography':	'Jacob	Lawrence	(born

1917)	has	been	a	prominent...',

		'birth_year':	'1917',

		'death_year':	'2000',
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		'description':	'Jacob	Lawrence

(American,	1917-2000)',

		'role':	'artist'}]

How	it	works…
We	use	the	Cleveland	Museum	of	Art's	collections	API	to	retrieve	collections

items.	The	african_american_artists	flag	in	the	query
string	indicates	that	we	just	want	collections	for	those	creators.

json.loads	returns	a	dictionary	called	info	and	a	list	of

dictionaries	called	data.	We	check	the	length	of	the	data	list.	This	tells	us
that	there	are	778	items	in	collections.	We	then	display	the	first	item	of
collections	to	get	a	better	look	at	the	structure	of	the	data.	(I	have	abbreviated	the
JSON	output.)

We	save	and	then	reload	the	data	using	Python's	JSON	library	in	step	3.	The
advantage	of	persisting	the	data	in	this	way	is	that	it	keeps	the	data	in	human-
readable	form.	Unfortunately,	it	has	two	disadvantages:	saving	takes	longer	than
alternative	serialization	methods,	and	it	uses	more	storage	space.

In	step	4,	we	use	msgpack	to	persist	our	data.	This	is	faster	than	Python's

json	library,	and	the	saved	file	uses	less	space.	Of	course,	the	disadvantage	is
that	the	resulting	JSON	is	binary	rather	than	text-based.

There's	more…
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I	use	both	methods	for	persisting	JSON	data	in	my	work.	When	I	am	working
with	small	amounts	of	data,	and	that	data	is	relatively	static,	I	prefer	human-
readable	JSON.	A	great	use	case	for	this	is	the	recipes	in	the	previous	chapter
where	we	needed	to	create	value	labels.

I	use	msgpack	when	I	am	working	with	large	amounts	of	data,	where	that

data	changes	regularly.	msgpack	files	are	also	great	when	you	want	to	take
regular	snapshots	of	key	tables	in	enterprise	databases.

The	Cleveland	Museum	of	Art's	collections	data	is	similar	in	at	least	one
important	way	to	the	data	we	work	with	every	day.	The	unit	of	analysis
frequently	changes.	Here	we	are	looking	at	collections,	citations,	and	creators.	In
our	work,	we	might	have	to	simultaneously	look	at	students	and	courses,	or
households	and	deposits.	An	enterprise	database	system	for	the	museum	data
would	likely	have	separate	collections,	citations,	and	creators	tables	that	we
would	eventually	need	to	merge.	The	resulting	merged	file	would	have	data
redundancy	issues	that	we	would	need	to	account	for	whenever	we	changed	the
unit	of	analysis.

When	we	alter	our	data	cleaning	process	to	work	directly	from	JSON	or	parts	of
it,	we	end	up	eliminating	a	major	source	of	errors.	We	do	more	data	cleaning
with	JSON	in	the	Classes	that	handle	non-tabular	data	structures	recipe	in
Chapter	10,	User-Defined	Functions	and	Classes	to	Automate	Data	Cleaning.
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Chapter 	3: 	Taking	 the	Measure
of 	Your	Data
Within	a	week	of	receiving	a	new	dataset,	at	least	one	person	is	likely	to	ask	us	a
familiar	question:	"so,	how	does	it	look?"	This	is	not	always	asked	in	a	relaxed
tone,	and	others	are	not	usually	excited	to	hear	about	all	of	the	red	flags	we	have
already	found.	There	might	be	a	sense	of	urgency	to	declare	the	data	ready	for
analysis.	Of	course,	if	we	sign	it	off	too	soon,	this	can	create	much	larger
problems;	the	presentation	of	invalid	results,	the	misinterpretation	of	variable
relationships,	and	having	to	redo	major	chunks	of	our	analysis.	The	key	is
sorting	out	what	we	need	to	know	about	the	data	before	we	explore	anything	else
in	the	data.	The	recipes	in	this	chapter	offer	techniques	for	determining	if	the
data	is	in	good	enough	shape	to	begin	the	analysis,	so	that	even	if	we	cannot	say,
"it	looks	fine,"	we	can	at	least	say,	"I'm	pretty	sure	I	have	identified	the	main
issues,	and	here	they	are."

Often	our	domain	knowledge	is	quite	limited,	or	at	least	not	nearly	as	good	as
those	who	created	the	data.	We	have	to	quickly	get	a	sense	of	what	we	are
looking	at	even	when	we	have	little	substantive	understanding	of	the	individuals
or	events	reflected	in	the	data.	Many	times	(for	some	of	us,	most	of	the	time)
there	is	not	anything	like	a	data	dictionary	or	codebook	accompanying	the
receipt	of	the	data.

Quick.	Ask	yourself	what	the	first	few	things	you	try	to	find	out	in	this	situation
are;	that	is,	when	you	first	get	data	about	which	you	know	little.	It	is	probably
something	like	this:
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How	are	the	rows	of	the	dataset	uniquely	identified?	(What	is	the	unit	of
analysis?)

How	many	rows	and	columns	are	in	the	dataset?

What	are	the	key	categorical	variables	and	the	frequencies	of	each	value?

How	are	important	continuous	variables	distributed?

How	might	variables	be	related	to	each	other	–	for	example,	how	might	the
distribution	of	continuous	variables	vary	according	to	categories	in	the	data?

What	variable	values	are	out	of	expected	ranges,	and	how	are	missing	values
distributed?

We	go	over	essential	tools	and	strategies	for	answering	the	first	four	questions	in
this	chapter.	We	look	into	the	last	two	questions	in	the	following	chapter.

I	should	point	out	that	this	first	take	on	our	data	is	important	even	when	the
structure	of	the	data	is	familiar;	when,	for	example,	we	receive	data	for	a	new
month	or	year	with	the	same	column	names	and	data	types	as	in	previous
periods.	It	is	hard	to	guard	against	the	sense	that	we	can	just	rerun	our	old
programs;	to	be	as	vigilant	as	we	were	the	first	few	times	we	prepared	the	data
for	analysis.	Most	of	us	have	probably	been	in	situations	where	we	receive	new
data	with	a	familiar	structure,	but	the	answers	to	the	preceding	questions	are
meaningfully	different:	new	valid	values	for	key	categorical	variables;	rare
values	that	have	always	been	permissible	but	that	have	not	been	seen	for	several
periods;	and	unexpected	changes	in	the	status	of	clients/students/customers.	It	is
important	to	build	routines	for	understanding	our	data	that	we	follow	regardless
of	our	familiarity	with	it.

Specifically,	we	will	cover	the	following	topics	in	this	chapter:
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Getting	a	first	look	at	your	data

Selecting	and	organizing	columns

Selecting	rows

Generating	frequencies	for	categorical	variables

Generating	statistics	for	continuous	variables

Technical 	 requirements
The	code	and	notebooks	for	this	chapter	are	available	on	GitHub	at
https://github.com/PacktPublishing/Python-Data-Cleaning-Cookbook

Gett ing	a 	 f i rs t 	 look	at 	your 	data
We	will	work	with	two	datasets	in	this	chapter:	The	National	Longitudinal
Survey	of	Youth	for	1997,	a	survey	conducted	by	the	United	States	government
that	surveyed	the	same	group	of	individuals	from	1997	through	2017;	and	the
counts	of	COVID	cases	and	deaths	by	country	from	Our	World	in	Data.

Getting	ready…
We	will	mainly	be	using	the	pandas	library	for	this	recipe.	We	will	use	pandas
tools	to	take	a	closer	look	at	the	National	Longitudinal	Survey	(NLS)	and
COVID-19	case	data.
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NOTE
The	NLS	of	Youth	was	conducted	by	the	United	States	Bureau	of	Labor	Statistics.
This	survey	started	with	a	cohort	of	individuals	in	1997	who	were	born	between
1980	and	1985,	with	annual	follow-ups	each	year	through	2017.	For	this	recipe,
I	pulled	89	variables	on	grades,	employment,	income,	and	attitudes	toward
government	from	the	hundreds	of	data	items	on	the	survey.	Separate	files	for
SPSS,	Stata,	and	SAS	can	be	downloaded	from	the	repository.	NLS	data	can	be
downloaded	from	https://www.nlsinfo.org/investigator/pages/search.

Our	World	in	Data	provides	COVID-19	public	use	data	at
https://ourworldindata.org/coronavirus-source-data.

How	to	do	it...
We	will	get	an	initial	look	at	the	NLS	and	COVID	data,	including	the	number	of
rows	and	columns,	and	the	data	types:

1.	 Import	the	libraries	and	load	the	DataFrames:

>>>	import	pandas	as	pd

>>>	import	numpy	as	np

>>>	nls97	=

pd.read_csv("data/nls97.csv")

>>>

>>>	covidtotals	=

pd.read_csv("data/covidtotals.csv",
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...			parse_dates=['lastdate'])

2.	 Set	and	show	the	index	and	the	size	of	the	nls97	data.

Also,	check	to	see	whether	the	index	values	are	unique:

>>>	nls97.set_index("personid",

inplace=True)

>>>	nls97.index

Int64Index([100061,	100139,	100284,

100292,	100583,

100833,														...

												999543,	999698,	999963],

											dtype='int64',

name='personid',	length=8984)

>>>	nls97.shape

(8984,	88)

>>>	nls97.index.nunique()

8984

3.	 Show	the	data	types	and	non-null	value	counts:

>>>	nls97.info()

<class	'pandas.core.frame.DataFrame'>

Int64Index:	8984	entries,	100061	to

999963

Data	columns	(total	88	columns):

Telegram Channel @nettrain



#			Column																	Non-Null

Count		Dtype		

---		------																	---------

-----		-----		

0			gender																	8984	non-

null			object

1			birthmonth													8984	non-

null			int64		

2			birthyear														8984	non-

null			int64		

3			highestgradecompleted		6663	non-

null			float64

4			maritalstatus										6672	non-

null			object

5			childathome												4791	non-

null			float64

6			childnotathome									4791	non-

null			float64

7			wageincome													5091	non-

null			float64

8			weeklyhrscomputer						6710	non-

null			object

9			weeklyhrstv												6711	non-

null			object
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10		nightlyhrssleep								6706	non-

null			float64

11		satverbal														1406	non-

null			float64

12		satmath																1407	non-

null			float64

...

83		colenroct15												7469	non-

null			object

84		colenrfeb16												7036	non-

null			object

85		colenroct16												6733	non-

null			object

86		colenrfeb17												6733	non-

null			object

87		colenroct17												6734	non-

null			object

dtypes:	float64(29),	int64(2),

object(57)

memory	usage:	6.1+	MB

4.	 Show	the	first	row	of	the	nls97	data.

Use	transpose	to	show	a	little	more	of	the	output:

>>>	nls97.head(2).T

personid																								100061											100139
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gender																										Female													Male

birthmonth																											5																9

birthyear																									1980													1983

highestgradecompleted															13															12

maritalstatus																		Married										Married

...																																...														...

colenroct15												1.	Not

enrolled		1.	Not	enrolled

colenrfeb16												1.	Not

enrolled		1.	Not	enrolled

colenroct16												1.	Not

enrolled		1.	Not	enrolled

colenrfeb17												1.	Not

enrolled		1.	Not	enrolled

colenroct17												1.	Not

enrolled		1.	Not	enrolled

5.	 Set	and	show	the	index	and	size	for	the	COVID	data.

Also,	check	to	see	whether	index	values	are	unqiue:

>>>	covidtotals.set_index("iso_code",

inplace=True)

>>>	covidtotals.index

Index(['AFG',	'ALB',	'DZA',	'AND',

'AGO',	'AIA',	'ATG',

'ARG',											...
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							'UZB',	'VAT',	'VEN',	'VNM',

'ESH',	'YEM',	'ZMB','ZWE'],

						dtype='object',

name='iso_code',	length=210)

>>>	covidtotals.shape

(210,	11)

>>>	covidtotals.index.nunique()

210

6.	 Show	the	data	types	and	non-null	value	counts:

>>>	covidtotals.info()

<class	'pandas.core.frame.DataFrame'>

Index:	210	entries,	AFG	to	ZWE

Data	columns	(total	11	columns):

#			Column											Non-Null

Count		Dtype									

---		------											-------------

-		-----									

0			lastdate									210	non-

null				datetime64[ns]

1			location									210	non-

null				object								

2			total_cases						210	non-

null				int64									
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3			total_deaths					210	non-

null				int64									

4			total_cases_pm			209	non-

null				float64							

5			total_deaths_pm		209	non-

null				float64							

6			population							210	non-

null				float64							

7			pop_density						198	non-

null				float64							

8			median_age							186	non-

null				float64							

9			gdp_per_capita			182	non-

null				float64							

10		hosp_beds								164	non-

null				float64							

dtypes:	datetime64[ns](1),

float64(7),	int64(2),	object(1)

memory	usage:	19.7+	KB

7.	 Show	a	sample	of	a	few	rows	of	the	COVID	case	data:

>>>	covidtotals.sample(2,

random_state=1).T

iso_code																									COG																		THA
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lastdate									2020-06-01

00:00:00		2020-06-01	00:00:00

location																							Congo													Thailand

total_cases																						611																	3081

total_deaths																						20																			57

total_cases_pm															110.727																44.14

total_deaths_pm																3.624																0.817

population															5.51809e+06													6.98e+07

pop_density																			15.405														135.132

median_age																								19																	40.1

gdp_per_capita															4881.41														16277.7

hosp_beds																								NaN																		2.1

This	has	given	us	a	good	foundation	for	understanding	our	DataFrames,
including	their	size	and	column	data	types.

How	it	works…
We	set	and	display	the	index	of	the	nls97	DataFrame,	which	is	called

personid,	in	step	2.	It	is	a	more	meaningful	index	than	the	default	pandas

RangeIndex,	which	is	essentially	the	row	numbers	with	zero	base.
Often,	there	is	a	unique	identifier	when	working	with	individuals	as	the	unit	of
analysis.	This	is	a	good	candidate	for	an	index.	It	makes	selecting	a	row	by	that
identifier	easier.	Rather	than	using	the	statement

nls97.loc[personid==1000061]	to	get	the	row	for	that
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person,	we	can	use	nls97.loc[1000061].	We	try	this	out	in	the
next	recipe.

Pandas	makes	it	easy	to	view	the	number	of	rows	and	columns,	the	data	type	and
number	of	non-missing	values	for	each	column,	and	the	values	for	the	columns

for	a	few	rows	of	your	data.	This	can	be	accomplished	by	using	the	shape

attribute	and	calling	the	info	and	head,	or	sample,	methods.	Using

the	head(2)	method	shows	the	first	two	rows,	but	sometimes	it	is	helpful
to	grab	a	row	from	anywhere	in	the	DataFrame,	in	which	case	we	would	use

sample	(We	set	the	seed	when	we	call	sample

(random_state=1)	to	get	the	same	results	whenever	we	run	the

code).	We	can	chain	our	call	to	head	or	sample	with	a	T	to	transpose	it.
This	reverses	the	display	of	rows	and	columns.	That	is	helpful	when	there	are
more	columns	than	can	be	shown	horizontally	and	you	want	to	be	able	to	see	all
of	them.	By	transposing	the	rows	and	columns	we	are	able	to	see	all	of	the
columns.

The	shape	attribute	of	the	nls97	DataFrame	tells	us	that	there	are	8,984

rows	and	88	non-index	columns.	Since	personid	is	the	index,	it	is	not

included	in	the	column	count.	The	info	method	shows	us	that	many	of	the
columns	have	object	data	types	and	that	some	have	a	large	number	of	missing

values.	satverbal	and	satmath	have	only	about	1,400	valid
values.

The	shape	attribute	of	the	covidtotals	DataFrame	tells	us	that
there	are	210	rows	and	11	columns,	which	does	not	include	the	country

iso_code	column	used	for	the	index	(iso_code	is	a	unique	three-
digit	identifier	for	each	country).	The	key	variables	for	most	analyses	we	would
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do	are	total_cases,	total_deaths,

total_cases_pm,	and	total_deaths_pm.

total_cases	and	total_deaths	are	present	for	each

country,	but	total_cases_pm	and	total_deaths_pm
are	missing	for	one	country.

There's	more...
I	find	that	thinking	through	the	index	when	working	with	a	data	file	can	remind
me	of	the	unit	of	analysis.	That	is	not	actually	obvious	with	the	NLS	data,	as	it	is
actually	panel	data	disguised	as	person-level	data.	Panel,	or	longitudinal,
datasets	have	data	for	the	same	individuals	over	some	regular	duration.	In	this
case,	data	was	collected	for	each	person	over	a	21-year	span,	from	1997	till
2017.	The	administrators	of	the	survey	have	flattened	it	for	analysis	purposes	by
creating	columns	for	certain	responses	over	the	years,	such	as	college	enrollment

(colenroct15	through	colenroct17).	This	is	a	fairly
standard	practice,	but	it	is	likely	that	we	will	need	to	do	some	reshaping	for	some
analyses.

One	thing	I	pay	careful	attention	to	when	receiving	any	panel	data	is	drop-off	in
responses	to	key	variables	over	time.	Notice	the	drop	off	in	valid	values	from

colenroct15	to	colenroct17.	By	October	of	2017,	only
75%	of	respondents	provided	a	valid	response	(6,734/8,984).	That	is	definitely
worth	keeping	in	mind	during	subsequent	analysis,	since	the	6,734	remaining
respondents	may	be	different	in	important	ways	from	the	overall	sample	of
8,984.
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See	also
A	recipe	in	Chapter	1,	Anticipating	Data	Cleaning	Issues	when	Importing
Tabular	Data	into	pandas,	shows	how	to	persist	pandas	DataFrames	as	feather	or
pickle	files.	In	later	recipes	in	this	chapter,	we	will	look	at	descriptives	and
frequencies	for	these	two	DataFrames.

We	reshape	the	NLS	data	in	Chapter	9,	Tidying	and	Reshaping	Data,	recovering
some	of	its	actual	structure	as	panel	data.	This	is	necessary	for	statistical
methods	such	as	survival	analysis,	and	is	closer	to	tidy	data	ideals.

Select ing	and	organizing
columns
We	explore	several	ways	to	select	one	or	more	columns	from	your	DataFrame	in

this	recipe.	We	can	select	columns	by	passing	a	list	of	column	names	to	the	[]

bracket	operator,	or	by	using	the	pandas-specific	data	accessors	loc	and

iloc.

When	cleaning	data	or	doing	exploratory	or	statistical	analyses,	it	is	helpful	to
focus	on	the	variables	that	are	relevant	to	the	issue	or	analysis	at	hand.	This
makes	it	important	to	group	columns	according	to	their	substantive	or	statistical
relationships	with	each	other,	or	to	limit	the	columns	we	are	investigating	at	any
one	time.	How	many	times	have	we	said	to	ourselves	something	like,	"Why	does
variable	A	have	a	value	of	x	when	variable	B	has	a	value	of	y?"	We	can	only	do
that	when	the	amount	of	data	we	are	viewing	at	a	given	moment	does	not	exceed
our	perceptive	abilities	at	that	moment.
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Getting	ready…
We	will	continue	working	with	the	NLS	data	in	this	recipe.

How	to	do	it…
We	will	explore	several	ways	to	select	columns:

1.	 Import	the	pandas	library	and	load	the	NLS	data	into	pandas.

Also,	convert	all	columns	with	object	data	type	in	the	NLS	data	to	category
data	type.	Do	this	by	selecting	object	data	type	columns	with

select_dtypes	and	using	apply	plus	a	lambda	function

to	change	the	data	type	to	category:

>>>	import	pandas	as	pd

>>>	import	numpy	as	np

>>>	nls97	=

pd.read_csv("data/nls97.csv")

>>>	nls97.set_index("personid",

inplace=True)

>>>	nls97.loc[:,	nls97.dtypes	==

'object']	=	\

...			nls97.select_dtypes(['object']).

\

...			apply(lambda	x:

x.astype('category'))
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2.	 Select	a	column	using	the	pandas	[]	bracket	operator,	and	the	loc	and

iloc	accessors.

We	pass	a	string	matching	a	column	name	to	the	bracket	operator	to	return	a
pandas	series.	If	we	pass	a	list	of	one	element	with	that	column	name

(nls97[['gender']]),	a	DataFrame	is	returned.	We	can	also

use	the	loc	and	iloc	accessors	to	select	columns:

>>>	analysisdemo	=	nls97['gender']

>>>	type(analysisdemo)

<class	'pandas.core.series.Series'>

>>>	analysisdemo	=	nls97[['gender']]

>>>	type(analysisdemo)

<class	'pandas.core.frame.DataFrame'>

>>>	analysisdemo	=	nls97.loc[:,

['gender']]

>>>	type(analysisdemo)

<class	'pandas.core.frame.DataFrame'>

>>>	analysisdemo	=	nls97.iloc[:,[0]]

>>>	type(analysisdemo)

<class	'pandas.core.frame.DataFrame'>

3.	 Select	multiple	columns	from	a	pandas	DataFrame.

Use	the	bracket	operator	and	loc	to	select	a	few	columns:

>>>	analysisdemo	=

nls97[['gender','maritalstatus',
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...		'highestgradecompleted']]

>>>	analysisdemo.shape

(8984,	3)

>>>	analysisdemo.head()

										

gender		maritalstatus		highestgradecompleted

personid																																														

100061				

Female								Married																					13

100139							Male								Married																					12

100284							Male		Never-

married																						7

100292							Male												NaN																				nan

100583							Male								Married																					13

>>>	analysisdemo	=	nls97.loc[:,

['gender','maritalstatus',

...		'highestgradecompleted']]

>>>	analysisdemo.shape

(8984,	3)

>>>	analysisdemo.head()

																gender		

maritalstatus

highestgradecompleted

personid																																														
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100061					Female								

Married																					13

100139								Male								

Married																					12

100284									Male			Never-

married																					7

100292						

		Male														NaN																				nan

100583									Male								

Married																					13

4.	 Select	multiple	columns	based	on	a	list	of	columns.

If	you	are	selecting	more	than	a	few	columns,	it	is	helpful	to	create	the	list	of

column	names	separately.	Here,	we	create	a	keyvars	list	of	key
variables	for	analysis:

>>>	keyvars	=

['gender','maritalstatus',

...		'highestgradecompleted','wageincome',

...		'gpaoverall','weeksworked17','colenroct17']

>>>	analysiskeys	=	nls97[keyvars]

>>>	analysiskeys.info()

<class	'pandas.core.frame.DataFrame'>

Int64Index:	8984	entries,	100061	to

999963

Data	columns	(total	7	columns):
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#			Column																	Non-Null

Count		Dtype			

---		------																	---------

-----		-----			

0			gender																	8984	non-

null			category

1			maritalstatus										6672	non-

null			category

2			highestgradecompleted		6663	non-

null			float64

3			wageincome													5091	non-

null			float64

4			gpaoverall													6004	non-

null			float64

5			weeksworked17										6670	non-

null			float64

6			colenroct17												6734	non-

null			category

dtypes:	category(3),	float64(4)

memory	usage:	377.7	KB

5.	 Select	one	or	more	columns	by	filtering	on	column	name.

Select	all	of	the	weeksworked##	columns	using	the	filter
operator:
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>>>	analysiswork	=

nls97.filter(like="weeksworked")

>>>	analysiswork.info()

<class	'pandas.core.frame.DataFrame'>

Int64Index:	8984	entries,	100061	to

999963

Data	columns	(total	18	columns):

#			Column									Non-Null

Count		Dtype		

---		------									--------------		-

----		

0			weeksworked00		8603	non-

null			float64

1			weeksworked01		8564	non-

null			float64

2			weeksworked02		8556	non-

null			float64

3			weeksworked03		8490	non-

null			float64

4			weeksworked04		8458	non-

null			float64

5			weeksworked05		8403	non-

null			float64
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6			weeksworked06		8340	non-

null			float64

7			weeksworked07		8272	non-

null			float64

8			weeksworked08		8186	non-

null			float64

9			weeksworked09		8146	non-

null			float64

10		weeksworked10		8054	non-

null			float64

11		weeksworked11		7968	non-

null			float64

12		weeksworked12		7747	non-

null			float64

13		weeksworked13		7680	non-

null			float64

14		weeksworked14		7612	non-

null			float64

15		weeksworked15		7389	non-

null			float64

16		weeksworked16		7068	non-

null			float64

17		weeksworked17		6670	non-

null			float64

dtypes:	float64(18)
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memory	usage:	1.3	MB

6.	 Select	all	columns	with	the	category	data	type.

Use	the	select_dtypes	method	to	select	columns	by	data	type:

>>>	analysiscats	=

nls97.select_dtypes(include=

["category"])

>>>	analysiscats.info()

<class	'pandas.core.frame.DataFrame'>

Int64Index:	8984	entries,	100061	to

999963

Data	columns	(total	57	columns):

#			Column																	Non-Null

Count		Dtype			

---		------																	---------

-----		-----			

0			gender																	8984	non-

null			category

1			maritalstatus										6672	non-

null			category

2			weeklyhrscomputer						6710	non-

null			category

3			weeklyhrstv												6711	non-

null			category
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4			highestdegree										8953	non-

null			category

...

49		colenrfeb14												7624	non-

null			category

50		colenroct14												7469	non-

null			category

51		colenrfeb15												7469	non-

null			category

52		colenroct15												7469	non-

null			category

53		colenrfeb16												7036	non-

null			category

54		colenroct16												6733	non-

null			category

55		colenrfeb17												6733	non-

null			category

56		colenroct17												6734	non-

null			category

dtypes:	category(57)

memory	usage:	580.0	KB

7.	 Select	all	columns	with	numeric	data	types:

>>>	analysisnums	=

nls97.select_dtypes(include=
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["number"])

>>>	analysisnums.info()

<class	'pandas.core.frame.DataFrame'>

Int64Index:	8984	entries,	100061	to

999963

Data	columns	(total	31	columns):

#			Column																	Non-Null

Count		Dtype		

---		------																	---------

-----		-----		

0			birthmonth													8984	non-

null			int64		

1			birthyear														8984	non-

null			int64		

2			highestgradecompleted		6663	non-

null			float64

...

23		weeksworked10										8054	non-

null			float64

24		weeksworked11										7968	non-

null			float64

25		weeksworked12										7747	non-

null			float64
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26		weeksworked13										7680	non-

null			float64

27		weeksworked14										7612	non-

null			float64

28		weeksworked15										7389	non-

null			float64

29		weeksworked16										7068	non-

null			float64

30		weeksworked17										6670	non-

null			float64

dtypes:	float64(29),	int64(2)

memory	usage:	2.2	MB

8.	 Organize	columns	using	lists	of	column	names.

Use	lists	to	organize	the	columns	in	your	DataFrame.	You	can	easily	change
the	order	of	columns	or	exclude	some	columns	in	this	way.	Here,	we	move	the

columns	in	the	demoadult	list	to	the	front:

>>>	demo	=

['gender','birthmonth','birthyear']

>>>	highschoolrecord	=

['satverbal','satmath','gpaoverall',

...		'gpaenglish','gpamath','gpascience']

>>>	govresp	=

['govprovidejobs','govpricecontrols',

...			'govhealthcare','govelderliving','govindhelp',
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...			'govunemp','govincomediff','govcollegefinance',

...			'govdecenthousing','govprotectenvironment']

>>>	demoadult	=

['highestgradecompleted','maritalstatus',

...			'childathome','childnotathome','wageincome',

...			'weeklyhrscomputer','weeklyhrstv','nightlyhrssleep',

...			'highestdegree']

>>>	weeksworked	=

['weeksworked00','weeksworked01',

...			'weeksworked02','weeksworked03','weeksworked04',

...			'weeksworked14','weeksworked15','weeksworked16',

...			'weeksworked17']

>>>	colenr	=

['colenrfeb97','colenroct97','colenrfeb98',

...			'colenroct98','colenrfeb99','colenroct99',

							...

...			'colenrfeb15','colenroct15','colenrfeb16',

...			'colenroct16','colenrfeb17','colenroct17']

9.	 Create	the	new,	reorganized	DataFrame:

>>>	nls97	=	nls97[demoadult	+	demo	+

highschoolrecord	+	\

...			govresp	+	weeksworked	+	colenr]

>>>	nls97.dtypes
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highestgradecompleted					float64

maritalstatus												category

childathome															float64

childnotathome												float64

wageincome																float64

																											...			

colenroct15														category

colenrfeb16														category

colenroct16														category

colenrfeb17														category

colenroct17														category

Length:	88,	dtype:	object

The	preceding	steps	showed	how	to	select	columns	and	change	the	order	of
columns	in	a	pandas	DataFrame.

How	it	works…
Both	the	[]	bracket	operator	and	the	loc	data	accessor	are	very	handy	for
selecting	and	organizing	columns.	Each	returns	a	DataFrame	when	passed	a	list
of	names	of	columns.	The	columns	will	be	ordered	according	to	the	passed	list
of	column	names.

In	step	1,	we	use

nls97.select_dtypes(['object'])	to	select
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columns	with	object	data	type	and	chain	that	with	apply	and	a	lambda

function	(apply(lambda	x:

x.astype('category')))	to	change	those	columns	to

category.	We	use	the	loc	accessor	to	only	update	columns	with	object

data	type	(nls97.loc[:,	nls97.dtypes	==

'object'])	.	We	go	into	much	more	detail	on	apply	and

lambda	functions	in	Chapter	6,	Cleaning	and	Exploring	Data	with	Series
Operations.

We	also	select	columns	by	data	type	in	steps	6	and	7.	select_dtypes
becomes	quite	useful	when	passing	columns	to	methods	such	as

describe	or	value_counts	and	you	want	to	limit	the	analysis
to	continuous	or	categorical	variables.

In	step	9,	we	concatenate	six	different	lists	when	using	the	bracket	operator.	This

moves	the	column	names	in	demoadult	to	the	front	and	organizes	all	of
the	columns	by	those	six	groups.	There	are	now	clear	high	school	record	and
weeks	worked	sections	in	our	DataFrame's	columns.

There's	more…
We	can	also	use	select_dtypes	to	exclude	data	types.	Also,	if	we

are	just	interested	in	the	info	results,	we	can	chain	the

select_dtypes	call	with	the	info	method:

>>>	nls97.select_dtypes(exclude=

["category"]).info()

<class	'pandas.core.frame.DataFrame'>
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Int64Index:	8984	entries,	100061	to

999963

Data	columns	(total	31	columns):

#			Column																	Non-Null

Count		Dtype		

---		------																	----------

----		-----		

0			highestgradecompleted		6663	non-

null			float64

1			childathome												4791	non-

null			float64

2			childnotathome									4791	non-

null			float64

3			wageincome													5091	non-

null			float64

4			nightlyhrssleep								6706	non-

null			float64

5			birthmonth													8984	non-

null			int64		

6			birthyear														8984	non-

null			int64		

...

25		weeksworked12										7747	non-

null			float64
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26		weeksworked13										7680	non-

null			float64

27		weeksworked14										7612	non-

null			float64

28		weeksworked15										7389	non-

null			float64

29		weeksworked16										7068	non-

null			float64

30		weeksworked17										6670	non-

null			float64

dtypes:	float64(29),	int64(2)

memory	usage:	2.2	MB

The	filter	operator	can	also	take	a	regular	expression.	For	example,	you

can	return	the	columns	that	have	income	in	their	names:

>>>	nls97.filter(regex='income')

>>>	nls97.filter(regex='income')

										wageincome	govincomediff

personid																										

100061								12,500											NaN

100139							120,000											NaN

100284								58,000											NaN

100292											nan											NaN

100583								30,000											NaN
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...														...											...

999291								35,000											NaN

999406							116,000											NaN

999543											nan											NaN

999698											nan											NaN

999963								50,000											NaN

See	also
Many	of	these	techniques	can	be	used	to	create	pandas	series	as	well	as
DataFrames.	We	demonstrate	this	in	Chapter	6,	Cleaning	and	Exploring	Data
With	Series	Operations.

Select ing	rows
When	we	are	taking	the	measure	of	our	data	and	otherwise	answering	the
question,	"How	does	it	look?",	we	are	constantly	zooming	in	and	out.	We	are
looking	at	aggregated	numbers	and	particular	rows.	But	there	are	also	important
data	issues	that	are	only	obvious	at	an	intermediate	zoom	level,	issues	that	we
only	notice	when	looking	at	some	subset	of	rows.	This	recipe	demonstrates	how
to	use	the	pandas	tools	for	detecting	data	issues	in	subsets	of	our	data.

Getting	ready...
We	will	continue	working	with	the	NLS	data	in	this	recipe.
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How	to	do	it...
We	will	go	over	several	techniques	for	selecting	rows	in	a	pandas	DataFrame.

1.	 Import	pandas	and	numpy,	and	load	the	nls97	data:

>>>	import	pandas	as	pd

>>>	import	numpy	as	np

>>>	nls97	=

pd.read_csv("data/nls97.csv")

>>>	nls97.set_index("personid",

inplace=True)

2.	 Use	slicing	to	start	at	the	1001st	row	and	go	to	the	1004th	row:

nls97[1000:1004]	selects	every	row	starting	from	the	row

indicated	by	the	integer	to	the	left	of	the	colon	(1000,	in	this	case)	to,	but
not	including,	the	row	indicated	by	the	integer	to	the	right	of	the	colon

(1004).	The	row	at	1000	is	actually	the	1001st	row	because	of	zero-
based	indexing.	Each	row	appears	as	a	column	in	the	output	since	we	have
transposed	the	resulting	DataFrame:

>>>	nls97[1000:1004].T

personid						195884											195891											195970		195996

gender										Male													Male											Female		Female

birthmonth								12																9																3							9

birthyear							1981													1980													1982				1980

highestgradecompleted		NaN									12															17					NaN
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maritalstatus				NaN				Never-

married				Never-

married					NaN

...														...														...														...					...

colenroct15						NaN		1.	Not

enrolled		1.	Not

enrolled					NaN

colenrfeb16						NaN		1.	Not

enrolled		1.	Not

enrolled					NaN

colenroct16						NaN		1.	Not

enrolled		1.	Not

enrolled					NaN

colenrfeb17						NaN		1.	Not

enrolled		1.	Not

enrolled					NaN

colenroct17						NaN		1.	Not

enrolled		1.	Not

enrolled					NaN

3.	 Use	slicing	to	start	at	the	1001 	row	and	go	to	the	1004 	row,	skipping	every
other	row.

The	integer	after	the	second	colon	(2	in	this	case)	indicates	the	size	of	the

step.	When	the	step	is	excluded	it	is	assumed	to	be	1.	Notice	that	by	setting

the	value	of	the	step	to	2,	we	are	skipping	every	other	row:

>>>	nls97[1000:1004:2].T

st th
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personid														195884											195970

gender																		Male											Female

birthmonth																12																3

birthyear															1981													1982

highestgradecompleted				NaN															17

maritalstatus												NaN				Never-

married

...																						...														...

colenroct15														NaN		1.	Not

enrolled

colenrfeb16														NaN		1.	Not

enrolled

colenroct16														NaN		1.	Not

enrolled

colenrfeb17														NaN		1.	Not

enrolled

colenroct17														NaN		1.	Not

enrolled

4.	 Select	the	first	three	rows	using	head	and	[]	operator	slicing.

Note	that	nls97[:3]	returns	the	same	DataFrame	as

nls97.head(3).	By	not	providing	a	value	to	the	left	of	the	colon	in

[:3],	we	are	telling	the	operator	to	get	rows	from	the	start	of	the
DataFrame:

>>>	nls97.head(3).T
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personid														100061											100139											100284

gender																Female													Male													Male

birthmonth																	5																9															11

birthyear															1980													1983													1984

...																						...														...														...

colenroct15		1.	Not	enrolled		1.	Not

enrolled		1.	Not	enrolled

colenrfeb16		1.	Not	enrolled		1.	Not

enrolled		1.	Not	enrolled

colenroct16		1.	Not	enrolled		1.	Not

enrolled		1.	Not	enrolled

colenrfeb17		1.	Not	enrolled		1.	Not

enrolled		1.	Not	enrolled

colenroct17		1.	Not	enrolled		1.	Not

enrolled		1.	Not	enrolled

>>>	nls97[:3].T

personid														100061											100139											100284

gender																Female													Male													Male

birthmonth																	5																9															11

birthyear															1980													1983													1984

...																						...														...														...

colenroct15		1.	Not	enrolled		1.	Not

enrolled		1.	Not	enrolled
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colenrfeb16		1.	Not	enrolled		1.	Not

enrolled		1.	Not	enrolled

colenroct16		1.	Not	enrolled		1.	Not

enrolled		1.	Not	enrolled

colenrfeb17		1.	Not	enrolled		1.	Not

enrolled		1.	Not	enrolled

colenroct17		1.	Not	enrolled		1.	Not

enrolled		1.	Not	enrolled

5.	 Select	the	last	three	rows	using	tail	and	[]	operator	slicing.

Note	that	nls97.tail(3)	returns	the	same	DataFrame	as

nls97[-3:]:

>>>	nls97.tail(3).T

personid														999543											999698											999963

gender																Female											Female											Female

birthmonth																	8																5																9

birthyear															1984													1983													1982

...																						...														...														...

colenroct15		1.	Not	enrolled		1.	Not

enrolled		1.	Not	enrolled

colenrfeb16		1.	Not	enrolled		1.	Not

enrolled		1.	Not	enrolled

colenroct16		1.	Not	enrolled		1.	Not

enrolled		1.	Not	enrolled
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colenrfeb17		1.	Not	enrolled		1.	Not

enrolled		1.	Not	enrolled

colenroct17		1.	Not	enrolled		1.	Not

enrolled		1.	Not	enrolled

>>>	nls97[-3:].T

personid														999543											999698											999963

gender																Female											Female											Female

birthmonth																	8																5																9

birthyear															1984													1983													1982

...																						...														...														...

colenroct15		1.	Not	enrolled		1.	Not

enrolled		1.	Not	enrolled

colenrfeb16		1.	Not	enrolled		1.	Not

enrolled		1.	Not	enrolled

colenroct16		1.	Not	enrolled		1.	Not

enrolled		1.	Not	enrolled

colenrfeb17		1.	Not	enrolled		1.	Not

enrolled		1.	Not	enrolled

colenroct17		1.	Not	enrolled		1.	Not

enrolled		1.	Not	enrolled

6.	 Select	a	few	rows	using	the	loc	data	accessor.

Use	the	loc	accessor	to	select	by	index	label.	We	can	pass	a	list	of
index	labels	or	we	can	specify	a	range	of	labels.	(Recall	that	we	have	set

personid	as	the	index.)	Note	that
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nls97.loc[[195884,195891,195970]]	and

nls97.loc[195884:195970]	return	the	same
DataFrame:

>>>

nls97.loc[[195884,195891,195970]].T

personid														195884											195891											195970

gender																		Male													Male											Female

birthmonth																12																9

																3

birthyear															1981													1980													1982

highestgradecompleted				NaN															12															17

maritalstatus												NaN				Never-

married				Never-married

...																						...														...														...

colenroct15														NaN		1.	Not

enrolled		1.	Not	enrolled

colenrfeb16														NaN		1.	Not

enrolled		1.	Not	enrolled

colenroct16														NaN		1.	Not

enrolled		1.	Not	enrolled

colenrfeb17														NaN		1.	Not

enrolled		1.	Not	enrolled

colenroct17														NaN		1.	Not

enrolled		1.	Not	enrolled
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>>>	nls97.loc[195884:195970].T

personid														195884											195891											195970

gender																		Male													Male											Female

birthmonth																12																9																3

birthyear															1981													1980													1982

highestgradecompleted				NaN															12															17

maritalstatus												NaN				Never-

married				Never-married

...																						...														...														...

colenroct15														NaN		1.	Not

enrolled		1.	Not	enrolled

colenrfeb16														NaN		1.	Not

enrolled		1.	Not	enrolled

colenroct16														NaN		1.	Not

enrolled		1.	Not	enrolled

colenrfeb17														NaN		1.	Not

enrolled		1.	Not	enrolled

colenroct17														NaN		1.	Not

enrolled		1.	Not	enrolled

7.	 Select	a	row	from	the	beginning	of	the	DataFrame	with	the	iloc	data
accessor.

iloc	differs	from	loc	in	that	it	takes	a	list	of	row	position	integers,
rather	than	index	labels.	For	that	reason,	it	works	similarly	to	bracket	operator
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slicing.	In	this	step,	we	first	pass	a	one-item	list	with	the	value	of	0.	That
returns	a	DataFrame	with	the	first	row:

>>>	nls97.iloc[[0]].T

personid																								100061

gender																										Female

birthmonth																											5

birthyear																									1980

highestgradecompleted															13

maritalstatus																		Married

...																																...

colenroct15												1.	Not

enrolled

colenrfeb16												1.	Not

enrolled

colenroct16												1.	Not

enrolled

colenrfeb17												1.	Not

enrolled

colenroct17												1.	Not

enrolled

8.	 Select	a	few	rows	from	the	beginning	of	the	DataFrame	with	the	iloc	data
accessor.
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We	pass	a	three-item	list,	[0,1,2],	to	return	a	DataFrame	of	the	first

three	rows	of	nls97.	We	would	get	the	same	result	if	we	passed

[0:3]	to	the	accessor:

>>>	nls97.iloc[[0,1,2]].T

personid														100061											100139											100284

gender																Female													Male													Male

birthmonth																	5																9															11

birthyear															1980													1983													1984

...																						...														...														...

colenroct15		1.	Not	enrolled		1.	Not

enrolled		1.	Not	enrolled

colenrfeb16		1.	Not	enrolled		1.	Not

enrolled		1.	Not	enrolled

colenroct16		1.	Not	enrolled		1.	Not

enrolled		1.	Not	enrolled

colenrfeb17		1.	Not	enrolled		1.	Not

enrolled		1.	Not	enrolled

colenroct17		1.	Not	enrolled		1.	Not

enrolled		1.	Not	enrolled

>>>	nls97.iloc[0:3].T

personid														100061											100139											100284

gender																Female													Male													Male

birthmonth																	5																9															11

birthyear															1980													1983													1984
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...																						...														...														...

colenroct15		1.	Not	enrolled		1.	Not

enrolled		1.	Not	enrolled

colenrfeb16		1.	Not	enrolled		1.	Not

enrolled		1.	Not	enrolled

colenroct16		1.	Not	enrolled		1.	Not

enrolled		1.	Not	enrolled

colenrfeb17		1.	Not	enrolled		1.	Not

enrolled		1.	Not	enrolled

colenroct17		1.	Not	enrolled		1.	Not

enrolled		1.	Not	enrolled

9.	 Select	a	few	rows	from	the	end	of	the	DataFrame	with	the	iloc	data
accessor.

Use	nls97.iloc[[-3,-2,-1]],	and

nls97.iloc[-3:]	to	retrieve	the	last	three	rows	of	the

DataFrame.	By	not	providing	a	value	to	the	right	of	the	colon	in	[-3:],
we	are	telling	the	accessor	to	get	all	rows	from	the	third-to-last	row	to	the	end
of	the	DataFrame:

>>>	nls97.iloc[[-3,-2,-1]].T

personid														999543											999698											999963

gender																Female											Female											Female

birthmonth																	8																5																9

birthyear															1984													1983													1982

...																						...														...														...
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colenroct15		1.	Not	enrolled		1.	Not

enrolled		1.	Not	enrolled

colenrfeb16		1.	Not	enrolled		1.	Not

enrolled		1.	Not	enrolled

colenroct16		1.	Not	enrolled		1.	Not

enrolled		1.	Not	enrolled

colenrfeb17		1.	Not	enrolled		1.	Not

enrolled		1.	Not	enrolled

colenroct17		1.	Not	enrolled		1.	Not

enrolled		1.	Not	enrolled

>>>	nls97.iloc[-3:].T

personid														999543											999698											999963

gender																Female											Female											Female

birthmonth																	8																5																9

birthyear															1984													1983													1982

...																						...														...														...

colenroct15		1.	Not	enrolled		1.	Not

enrolled		1.	Not	enrolled

colenrfeb16		1.	Not	enrolled		1.	Not

enrolled		1.	Not	enrolled

colenroct16		1.	Not	enrolled		1.	Not

enrolled		1.	Not	enrolled

colenrfeb17		1.	Not	enrolled		1.	Not

enrolled		1.	Not	enrolled
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colenroct17		1.	Not	enrolled		1.	Not

enrolled		1.	Not	enrolled

10.	 Select	multiple	rows	conditionally	using	boolean	indexing.

Create	a	DataFrame	of	just	individuals	receiving	very	little	sleep.	About	5%
of	survey	respondents	got	4	or	fewer	hours'	sleep	per	night,	of	the	6,706
individuals	who	responded	to	that	question.	Test	who	is	getting	4	or	fewer

hours	of	sleep	with	nls97.nightlyhrssleep<=4,	which

generates	a	pandas	series	of	True	and	False	values	that	we	assign	to

sleepcheckbool.	Pass	that	series	to	the	loc	accessor	to	create

a	lowsleep	DataFrame.	lowsleep	has	approximately	the
number	of	rows	we	are	expecting.	We	do	not	need	to	do	the	extra	step	of
assigning	the	boolean	series	to	a	variable.	This	is	done	here	only	for
explanatory	purposes:

>>>

nls97.nightlyhrssleep.quantile(0.05)

4.0

>>>	nls97.nightlyhrssleep.count()

6706

>>>	sleepcheckbool	=

nls97.nightlyhrssleep<=4

>>>	sleepcheckbool

personid

100061				False

100139				False
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100284				False

100292				False

100583				False

										...		

999291				False

999406				False

999543				False

999698				False

999963				False

Name:	nightlyhrssleep,	Length:	8984,

dtype:	bool

>>>	lowsleep	=

nls97.loc[sleepcheckbool]

>>>	lowsleep.shape

(364,	88)

11.	 Select	rows	based	on	multiple	conditions.

It	may	be	that	folks	who	are	not	getting	a	lot	of	sleep	also	have	a	fair	number

of	children	who	live	with	them.	Use	describe	to	get	a	sense	of	the

distribution	of	the	number	of	children	for	those	who	have	lowsleep.
About	a	quarter	have	three	or	more	children.	Create	a	new	DataFrame	with

individuals	who	have	nightlyhrssleep	of	4	or	less	and	the

number	of	children	at	home	of	3	or	more.	The	&	is	the	logical	and	operator	in
pandas	and	indicates	that	both	conditions	have	to	be	true	for	the	row	to	be
selected	(We	would	have	gotten	the	same	result	if	we	worked	from	the
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lowsleep	DataFrame	–	lowsleep3pluschildren

=

lowsleep.loc[lowsleep.childathome>=3]

–	but	then	we	would	not	have	been	able	to	demonstrate	testing	multiple
conditions):

>>>	lowsleep.childathome.describe()

count			293.00

mean						1.79

std							1.40

min							0.00

25%							1.00

50%							2.00

75%							3.00

max							9.00

>>>	lowsleep3pluschildren	=

nls97.loc[(nls97.nightlyhrssleep<=4)

&	(nls97.childathome>=3)]

>>>	lowsleep3pluschildren.shape

(82,	88)

12.	 Select	rows	and	columns	based	on	multiple	conditions.

Pass	the	condition	to	the	loc	accessor	to	select	rows.	Also,	pass	a	list	of
column	names	to	select:

>>>	lowsleep3pluschildren	=

nls97.loc[(nls97.nightlyhrssleep<=4)
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&	(nls97.childathome>=3),

['nightlyhrssleep','childathome']]

>>>	lowsleep3pluschildren

										nightlyhrssleep		childathome

personid																														

119754																		4												4

141531																		4												5

152706																		4												4

156823																		1												3

158355																		4												4

...																			...										...

905774																		4												3

907315																		4												3

955166																		3												3

956100																		4												6

991756																		4												3

The	preceding	steps	demonstrated	the	key	techniques	for	selecting	rows	in
pandas.

How	it	works…
We	used	the	[]	bracket	operator	in	steps	2	through	5	to	do	standard	Python-
like	slicing	to	select	rows.	That	operator	allows	us	to	easily	select	rows	based	on
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a	list	or	a	range	of	values	indicated	with	slice	notation.	This	notation	takes	the

form	of	[start:end:step],	where	a	value	of	1	for	step	is

assumed	if	no	value	is	provided.	When	a	negative	number	is	used	for	start,
it	represents	the	number	of	rows	from	the	end	of	the	DataFrame.

The	loc	accessor,	used	in	step	6,	selects	rows	based	on	row	index	labels.

Since	personid	is	the	index	for	the	DataFrame,	we	can	pass	a	list	of	one

or	more	personid	values	to	the	loc	accessor	to	get	a	DataFrame	with
rows	for	those	index	labels.	We	can	also	pass	a	range	of	index	labels	to	the
accessor,	which	will	return	a	DataFrame	with	all	rows	having	index	labels
between	the	label	to	the	left	of	the	colon	and	the	label	to	the	right	(inclusive);	so,

nls97.loc[195884:195970]	returns	a	DataFrame	for	rows

with	personid	between	195884	and	195970,	including	those
two	values.

The	iloc	accessor	works	very	much	like	the	bracket	operator.	We	see	this	in
steps	7	through	9.	We	can	pass	either	a	list	of	integers	or	a	range	using	slicing
notation.

One	of	the	most	valuable	pandas	capabilities	is	boolean	indexing.	It	makes	it
easy	to	select	rows	conditionally.	We	see	this	in	step	10.	A	test	returns	a	boolean

series.	The	loc	accessor	selects	all	rows	for	which	the	test	is	True.	We
actually	didn't	need	to	assign	the	boolean	data	series	to	the	variable	that	we	then

passed	to	the	loc	operator	in.	We	could	have	just	passed	the	test	to	the	loc
accessor	with

nls97.loc[nls97.nightlyhrssleep<=4].
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We	should	take	a	closer	look	at	how	we	used	the	loc	accessor	to	select	rows
in	step	11.	Each	condition	in

nls97.loc[(nls97.nightlyhrssleep<=4)	&

(nls97.childathome>=3)]	is	placed	in	parentheses.	An

error	will	be	generated	if	the	parentheses	are	excluded.	The	&	operator	is	the

equivalent	of	and	in	standard	Python,	meaning	that	both	conditions	have	to	be

True	for	the	row	to	be	selected.	We	would	have	used	|	for	or	if	we	had

wanted	to	select	the	row	if	either	condition	was	True.

Finally,	step	12	demonstrates	how	to	select	both	rows	and	columns	in	one	call	to

the	loc	accessor.	The	criteria	for	rows	appear	before	the	comma,	and	the
columns	to	select	appear	after	the	comma,	as	in	the	following	statement:

nls97.loc[(nls97.nightlyhrssleep<=4)	&

(nls97.childathome>=3),

['nightlyhrssleep','childathome']]

This	returns	the	nightlyhrssleep	and	childathome

columns	for	all	rows	where	the	individual	has	nightlyhrssleep	of

less	than	or	equal	to	4,	and	childathome	greater	than	or	equal	to	3.

There's	more…
We	used	three	different	tools	to	select	rows	from	a	pandas	DataFrame	in	this

recipe:	the	[]	bracket	operator,	and	two	pandas-specific	accessors,	loc	and

iloc.	This	is	a	little	confusing	if	you	are	new	to	pandas,	but	it	becomes	clear
which	tool	to	use	in	which	situation	after	just	a	few	months.	If	you	came	to

pandas	with	a	fair	bit	of	Python	and	NumPy	experience,	you	likely	find	the	[]
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operator	most	familiar.	However,	the	pandas	documentation	recommends	against

using	the	[]	operator	for	production	code.	I	have	settled	on	a	routine	of	using

that	operator	only	for	selecting	columns	from	a	DataFrame.	I	use	the	loc
accessor	when	selecting	rows	by	boolean	indexing	or	by	index	label,	and	the

iloc	accessor	for	selecting	rows	by	row	number.	Since	my	workflow	has	me

using	a	fair	bit	of	boolean	indexing,	I	use	loc	much	more	than	the	other
methods.

See	also
The	recipe	immediately	preceding	this	one	has	a	more	detailed	discussion	on
selecting	columns.

Generat ing	frequencies 	 for
categorical 	var iables
Many	years	ago,	a	very	seasoned	researcher	said	to	me,	"90%	of	what	we're
going	to	find,	we'll	see	in	the	frequency	distributions."	That	message	has	stayed
with	me.	The	more	one-way	and	two-way	frequency	distributions	(crosstabs)	I
do	on	a	DataFrame,	the	better	I	understand	it.	We	will	do	one-way	distributions
in	this	recipe,	and	crosstabs	in	subsequent	recipes.

Getting	ready…
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We	continue	our	work	with	the	NLS.	We	will	also	be	doing	a	fair	bit	of	column

selection	using	filter	methods.	It	is	not	necessary	to	review	the	recipe	in
this	chapter	on	column	selection,	but	it	might	be	helpful.

How	to	do	it…
We	use	pandas	tools	to	generate	frequencies,	particularly	the	very	handy

value_counts:

1.	 Load	the	pandas	library	and	the	nls97	file.

Also,	convert	the	columns	with	object	data	type	to	category	data	type:

>>>	import	pandas	as	pd

>>>	nls97	=

pd.read_csv("data/nls97.csv")

>>>	nls97.set_index("personid",

inplace=True)

>>>	nls97.loc[:,	nls97.dtypes	==

'object']	=	\

...			nls97.select_dtypes(['object']).

\

...			apply(lambda	x:

x.astype('category'))

2.	 Show	the	names	for	columns	with	the	category	data	type	and	check	for	the
number	of	missing	values.
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Notice	that	there	are	no	missing	values	for	gender	and	few	for

highestdegree,	but	many	for	maritalstatus	and
other	columns:

>>>	catcols	=

nls97.select_dtypes(include=

["category"]).columns

>>>	nls97[catcols].isnull().sum()

gender																		0

maritalstatus								2312

weeklyhrscomputer				2274

weeklyhrstv										2273

highestdegree										31

																					...

colenroct15										1515

colenrfeb16										1948

colenroct16										2251

colenrfeb17										2251

colenroct17										2250

Length:	57,	dtype:	int64

3.	 Show	the	frequencies	for	marital	status:

>>>

nls97.maritalstatus.value_counts()

Married										3066
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Never-married				2766

Divorced										663

Separated									154

Widowed												23

Name:	maritalstatus,	dtype:	int64

4.	 Turn	off	sorting	by	frequency:

>>>

nls97.maritalstatus.value_counts(sort=False)

Divorced										663

Married										3066

Never-married				2766

Separated									154

Widowed												23

Name:	maritalstatus,	dtype:	int64

5.	 Show	percentages	instead	of	counts:

>>>

nls97.maritalstatus.value_counts(sort=False,

normalize=True)

Divorced								0.10

Married									0.46

Never-married			0.41

Separated							0.02

Widowed									0.00
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Name:	maritalstatus,	dtype:	float64

6.	 Show	the	percentages	for	all	government	responsibility	columns.

Filter	the	DataFrame	for	just	the	government	responsibility	columns,	then	use

apply	to	run	value_counts	on	all	columns	in	that	DataFrame:

>>>

nls97.filter(like="gov").apply(pd.value_counts,

normalize=True)

																			govprovidejobs		govpricecontrols		...		\

1.

Definitely																0.25														0.54		...			

2.

Probably																		0.34														0.33		...			

3.	Probably

not														0.25														0.09		...			

4.	Definitely

not												0.16														0.04		...			

																			govdecenthousing		govprotectenvironment		

1.

Definitely																		0.44																			0.67		

2.

Probably																				0.43																			0.29		

3.	Probably

not																0.10																			0.03		
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4.	Definitely

not														0.02																			0.02

7.	 Find	the	percentages	for	all	government	responsibility	columns	of	people	who
are	married.

Do	what	we	did	in	step	6,	but	first	select	only	rows	with	marital	status	equal	to

Married:

>>>

nls97[nls97.maritalstatus=="Married"].\

...	filter(like="gov").\

...	apply(pd.value_counts,

normalize=True)

																			govprovidejobs		govpricecontrols		...		\

1.

Definitely																0.17														0.46		...			

2.

Probably																		0.33														0.38		...			

3.	Probably

not														0.31														0.11		...			

4.	Definitely

not												0.18														0.05		...			

																			govdecenthousing		govprotectenvironment		

1.

Definitely																		0.36																			0.64		
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2.

Probably																				0.49																			0.31		

3.	Probably

not																0.12																			0.03		

4.	Definitely

not														0.03																			0.01

8.	 Find	the	frequencies	and	percentages	for	all	category	columns	in	the
DataFrame.

First,	open	a	file	to	write	out	the	frequencies:

>>>	freqout	=

open('views/frequencies.txt',

'w')

>>>

>>>	for	col	in

nls97.select_dtypes(include=

["category"]):

...			print(col,	"-------------------

---",	"frequencies",

...			nls97[col].value_counts(sort=False),"percentages",

...			nls97[col].value_counts(normalize=True,

sort=False),

...			sep="\n\n",	end="\n\n\n",

file=freqout)

...
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>>>	freqout.close()

This	generates	a	file,	the	beginning	of	which	looks	like	this:

gender

----------------------

frequencies

Female				4385

Male						4599

Name:	gender,	dtype:	int64

percentages

Female			0.49

Male					0.51

Name:	gender,	dtype:	float64

As	these	steps	demonstrate,	value_counts	is	quite	useful	when	we
need	to	generate	frequencies	for	one	or	more	columns	of	a	DataFrame.

How	it	works…
Most	of	the	columns	in	the	nls97	DataFrame	(57	out	of	88)	have	the	object
data	type.	If	we	are	working	with	data	that	is	logically	categorical,	but	does	not
have	a	category	data	type	in	pandas,	there	are	good	reasons	to	convert	it	to	the
category	type.	Not	only	does	this	save	memory,	it	also	makes	data	cleaning	a
little	easier,	as	we	saw	in	this	recipe.
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The	star	of	the	show	for	this	recipe	is	the	value_counts	method.	It
can	generate	frequencies	for	a	series,	as	we	do	with

nls97.maritalstatus.value_counts.	It	can	also
be	run	on	a	whole	DataFrame	as	we	do	with

nls97.filter(like="gov").apply(pd.value_counts,

normalize=True).	We	first	create	a	DataFrame	with	just	the
government	responsibility	columns	and	then	pass	the	resulting	DataFrame	to

value_counts	with	apply.

You	probably	noticed	that	in	step	7,	I	split	the	chaining	over	several	lines	to
make	it	easier	to	read.	There	is	no	rule	about	when	it	makes	sense	to	do	that.	I
generally	try	to	do	that	whenever	the	chaining	involves	three	or	more	operations.

In	step	8,	we	iterate	over	all	of	the	columns	with	the	category	data	type:	for

col	in	nls97.select_dtypes(include=

["category"]).	For	each	of	those	columns,	we	run

value_counts	to	get	frequencies	and	value_counts	again

to	get	percentages.	We	use	a	print	function	so	that	we	can	generate	the
carriage	returns	necessary	to	make	the	output	readable.	All	of	this	is	saved	to	the

frequencies.txt	file	in	the	views	subfolder.	I	find	it	handy	to
have	a	bunch	of	one-way	frequencies	around	just	to	check	before	doing	any
work	with	categorical	variables.	Step	8	accomplishes	that.

There's	more…
Frequency	distributions	may	be	the	most	important	statistical	tool	for
discovering	potential	data	issues	with	categorical	data.	The	one-way	frequencies
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we	generate	in	this	recipe	are	a	good	foundation	for	further	insights.

However,	we	often	only	detect	problems	once	we	examine	the	relationships
between	categorical	variables	and	other	variables,	categorical	or	continuous.
Although	we	stop	short	of	doing	two-way	frequencies	in	this	recipe,	we	do	start
the	process	of	splitting	up	the	data	for	investigation	in	step	7.	In	that	step,	we
look	at	government	responsibility	responses	for	married	individuals	and	see	that
those	responses	differ	from	those	for	the	sample	overall.

This	raises	several	questions	about	our	data	that	we	need	to	explore.	Are	there
important	differences	in	response	rates	by	marital	status,	and	might	this	matter
for	the	distribution	of	the	government	responsibility	variables?	We	also	want	to
be	careful	about	drawing	conclusions	before	considering	potential	confounding
variables.	Are	married	respondents	likely	to	be	older	or	to	have	more	children,
and	are	those	more	important	factors	in	their	government	responsibility	answers?

I	am	using	the	marital	status	variable	as	an	example	of	the	kind	of	queries	that
producing	one-way	frequencies,	like	the	ones	in	this	recipe,	are	likely	to
generate.	It	is	always	good	to	have	some	bivariate	analyses	(a	correlation	matrix,
some	crosstabs,	or	a	few	scatter	plots)	at	the	ready	should	questions	like	these
come	up.	We	will	generate	those	in	the	next	two	chapters.

Generat ing	summary	s ta t is t ics
for 	cont inuous	var iables
Pandas	has	a	good	number	of	tools	we	can	use	to	get	a	sense	of	the	distribution
of	continuous	variables.	We	will	focus	on	the	splendid	functionality	of
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describe	in	this	recipe	and	demonstrate	the	usefulness	of	histograms	for
visualizing	variable	distributions.

Before	doing	any	analysis	with	a	continuous	variable	it	is	important	to	have	a
good	understanding	of	how	it	is	distributed	–	its	central	tendency,	its	spread,	and
its	skewness.	This	understanding	greatly	informs	our	efforts	to	identify	outliers
and	unexpected	values.	But	it	is	also	crucial	information	in	and	of	itself.	I	do	not
think	it	overstates	the	case	to	say	that	we	understand	a	particular	variable	well	if
we	have	a	good	understanding	of	how	it	is	distributed,	and	any	interpretation
without	that	understanding	will	be	incomplete	or	flawed	in	some	way.

Getting	ready…
We	will	work	with	the	COVID	totals	data	in	this	recipe.	You	will	need
Matplotlib	to	run	this.	If	it	is	not	installed	on	your	machine	already,	you	can

install	it	at	the	terminal	by	entering	pip	install

matplotlib.

How	to	do	it…
We	take	a	look	at	the	distribution	of	a	few	key	continuous	variables:

1.	 Import	pandas,	numpy,	and	matplotlib,	and	load	the
COVID	case	totals	data:

>>>	import	pandas	as	pd

>>>	import	numpy	as	np

>>>	import	matplotlib.pyplot	as	plt
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>>>	covidtotals	=

pd.read_csv("data/covidtotals.csv",

...			parse_dates=['lastdate'])

>>>	covidtotals.set_index("iso_code",

inplace=True)

2.	 Let's	remind	ourselves	of	the	structure	of	the	data:

>>>	covidtotals.shape

(210,	11)

>>>	covidtotals.sample(2,

random_state=1).T

iso_code																									COG																		THA

lastdate									2020-06-01

00:00:00		2020-06-01	00:00:00

location																							Congo													Thailand

total_cases																						611																	3081

total_deaths																						20																			57

total_cases_pm																110.73																44.14

total_deaths_pm																	3.62																	0.82

population														5,518,092.00								69,799,978.00

pop_density																				15.40															135.13

median_age																					19.00																40.10

gdp_per_capita														4,881.41												16,277.67

hosp_beds																								NaN																	2.10
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>>>	covidtotals.dtypes

lastdate											datetime64[ns]

location																			object

total_cases																	int64

total_deaths																int64

total_cases_pm												float64

total_deaths_pm											float64

population																float64

pop_density															float64

median_age																float64

gdp_per_capita												float64

hosp_beds																	float64

dtype:	object

3.	 Get	the	descriptive	statistics	on	the	COVID	totals	and	demographic	columns:

>>>	covidtotals.describe()

				total_cases		total_deaths		total_cases_pm		...		median_age		

count							210											210													209		...									186			

mean					29,216									1,771											1,362		...										31			

std					136,398									8,706											2,630		...											9			

min											0													0															1		...										15			

25%									176													4														97		...										22			

50%							1,242												26													282		...										30			

75%						10,117											241											1,803		...										39			
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max			1,790,191							104,383										19,771		...										48			

							gdp_per_capita		hosp_beds		

count													182								164		

mean											19,539										3		

std												19,862										2		

min															661										0		

25%													4,485										1		

50%												13,183										2		

75%												28,557										4		

max											116,936									14		

4.	 Take	a	closer	look	at	the	distribution	of	values	for	the	cases	and	deaths
columns.

Use	NumPy's	arange	method	to	pass	a	list	of	floats	from	0	to	1.0	to	the

quantile	method	of	the	DataFrame:

>>>	totvars	=

['location','total_cases','total_deaths',

...			'total_cases_pm','total_deaths_pm']

>>>

covidtotals[totvars].quantile(np.arange(0.0,

1.1,	0.1))

						total_cases		total_deaths		total_cases_pm		total_deaths_pm

0.00							0.00										0.00												0.89													0.00

0.10						22.90										0.00											18.49													0.00
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0.20					105.20										2.00											56.74													0.40

0.30					302.00										6.70										118.23													1.73

0.40					762.00									12.00										214.92													3.97

0.50			1,242.50									25.50										282.00													6.21

0.60			2,514.60									54.60										546.05												12.56

0.70			6,959.80								137.20								1,074.03												26.06

0.80		16,847.20								323.20								2,208.74												50.29

0.90		46,513.10						1,616.90								3,772.00											139.53

1.00

1,790,191.00			104,383.00						19,771.35									1,237.55

5.	 View	the	distribution	of	total	cases:

>>>

plt.hist(covidtotals['total_cases']/1000,

bins=12)

>>>	plt.title("Total	Covid	Cases")

>>>	plt.xlabel('Cases')

>>>	plt.ylabel("Number	of	Countries")

>>>	plt.show()
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Figure	3.1	–	Total	COVID	Cases

The	preceding	steps	demonstrated	the	use	of	describe	and	Matplotlib's

hist	method,	which	are	essential	tools	when	working	with	continuous
variables.

How	it	works…
We	use	the	describe	method	in	step	3	to	examine	some	summary
statistics	and	the	distribution	of	the	key	variables.	It	is	often	a	red	flag	when	the
mean	and	median	(50%)	have	dramatically	different	values.	Cases	and	deaths	are
heavily	skewed	to	the	right	(reflected	in	the	mean	being	much	higher	than	the
median).	This	alerts	us	to	the	presence	of	outliers	at	the	upper	end.	This	is	true
even	with	the	adjustment	for	population	size,	as	both
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total_cases_pm	and	total_deaths_pm	show	this
same	skew.	We	do	more	analysis	of	outliers	in	the	next	chapter.

The	more	detailed	percentile	data	in	step	4	further	supports	this	sense	of
skewness.	For	instance,	the	gap	between	the	90th-percentile	and	100th-percentile
values	for	cases	and	deaths	is	substantial.	These	are	good	first	indicators	that	we
are	not	dealing	with	normally	distributed	data	here.	Even	if	this	is	not	due	to
errors,	this	matters	for	the	statistical	testing	we	will	do	down	the	road.	On	the	list
of	things	we	want	to	note	when	asked,	"How	does	the	data	look?"	this	is	one	of
the	first	things	we	want	to	say.

We	should	also	note	the	large	number	of	zero	values	for	total	deaths,	over	10%.
This	will	also	matter	for	statistical	testing	when	we	get	to	that	point.

The	histogram	of	total	cases	confirms	that	much	of	the	distribution	is	between	0
and	150,000,	with	a	few	outliers	and	1S	extreme	outlier.	Visually,	the
distribution	looks	much	more	log-normal	than	normal.	Log-normal	distributions
have	fatter	tails	and	do	not	have	negative	values.

See	also
We	take	a	closer	look	at	outliers	and	unexpected	values	in	the	next	chapter.	We
do	much	more	with	visualizations	in	Chapter	5,	Using	Visualizations	for	the
Identification	of	Unexpected	Values.
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Chapter 	4: 	 Ident i fying	Missing
Values	and	Outl iers 	 in 	Subsets
of 	Data
Outliers	and	unexpected	values	may	not	be	errors.	They	often	are	not.
Individuals	and	events	are	complicated	and	surprise	the	analyst.	Some	people
really	are	7'4"	tall	and	some	really	have	$50	million	salaries.	Sometimes,	data	is
messy	because	people	and	situations	are	messy;	however,	extreme	values	can
have	an	outsized	impact	on	our	analysis,	particularly	when	we	are	using
parametric	techniques	that	assume	a	normal	distribution.

These	issues	may	become	even	more	apparent	when	working	with	subsets	of
data.	That	is	not	just	because	extreme	or	unexpected	values	have	more	weight	in
smaller	samples.	It	is	also	because	they	may	make	less	sense	when	bivariate	and
multivariate	relationships	are	considered.	When	the	7'4"	person,	or	the	person
making	$50	million,	is	10	years	old,	the	red	flag	gets	even	redder.	We	take	these
complications	into	account	in	this	chapter	when	considering	strategies	for
detecting	outliers,	unexpected	values,	and	missing	values.

Specifically,	the	recipes	in	this	chapter	examine	the	following:

Finding	missing	values

Identifying	outliers	with	one	variable

Identifying	outliers	and	unexpected	values	in	bivariate	relationships

Using	subsetting	to	examine	logical	inconsistencies	in	variable	relationships
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Using	linear	regression	to	identify	data	points	with	significant	influence

Using	k-nearest	neighbor	to	find	outliers

Using	Isolation	Forest	to	find	anomalies

Technical 	 requirements
The	code	and	notebooks	for	this	chapter	are	available	on	GitHub	at
https://github.com/PacktPublishing/Python-Data-Cleaning-Cookbook

Finding	missing	values
Before	starting	any	analysis,	we	need	to	have	a	good	sense	of	the	number	of
missing	values	for	each	variable,	and	why	those	values	are	missing.	We	also
want	to	know	which	rows	in	our	data	frame	are	missing	values	for	several	key
variables.	We	can	get	this	information	with	just	a	couple	of	statements	in	pandas.

We	also	need	good	strategies	for	dealing	with	missing	values	before	we	begin
statistical	modeling,	since	those	models	do	not	typically	handle	missing	values
flexibly.	We	introduce	imputation	strategies	in	this	recipe	and	go	into	more	detail
in	subsequent	recipes	in	this	chapter.

Getting	ready
We	will	work	with	cumulative	data	on	coronavirus	cases	and	deaths	by	country.
The	DataFrame	has	other	relevant	information,	including	population	density,
age,	and	GDP.
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NOTE
Our	World	in	Data	provides	COVID-19	public	use	data	at
https://ourworldindata.org/coronavirus-source-data.	The	data	used	in	this	recipe
was	downloaded	on	June	1,	2020.	The	Covid	case	and	death	data	were	missing
for	Hong	Kong	as	of	this	date,	but	this	problem	was	rectified	in	files	after	that.

We	will	also	be	doing	some	routine	plotting	with	Matplotlib	in	this	recipe	to	help
us	visualize	the	distributions	of	Covid	cases	and	deaths.	You	can	install

Matplotlib	using	pip	install	matplotlib.

How	to	do	it…
We	make	good	use	of	the	isnull	and	sum	functions	to	count	the	number
of	missing	values	for	selected	columns	and	the	number	of	rows	that	have
missing	values	for	several	key	variables.	We	then	use	the	very	handy	data	frame

fillna	method	to	impute	missing	values:

1.	 Load	the	pandas,	numpy,	and	matplotlib	libraries,	along
with	the	Covid	case	data	file.

Also,	set	up	the	Covid	case	and	demographic	columns:

>>>	import	pandas	as	pd

>>>	import	numpy	as	np

>>>	import	matplotlib.pyplot	as	plt

>>>	covidtotals	=

pd.read_csv("data/covidtotalswithmissings.csv")
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>>>	totvars	=

['location','total_cases','total_deaths','total_cases_pm',

...			'total_deaths_pm']

>>>

>>>	demovars	=

['population','pop_density','median_age','gdp_per_capita',

...			'hosp_beds']

2.	 Check	the	demographic	columns	for	missing	data.

Set	the	axis	to	0	(the	default)	to	check	for	the	count	of	countries	that	are
missing	values	for	each	of	the	demographic	variables	(missing	values	down
columns).	Notice	that	46	out	of	210	countries,	more	than	20	percent	of

countries,	are	missing	hosp_beds.	Set	the	axis	to	1	to	check	for	the
number	of	demographic	variables	that	are	missing	for	each	country	(missing

values	across	rows).	Next,	get	value_counts	on	the	resulting

demovarsmisscnt	series	to	see	whether	some	countries	have
missing	values	for	much	of	the	demographic	data.	Notice	that	10	countries	are
missing	values	for	3	out	of	the	5	demographic	variables,	while	8	countries	are
missing	values	for	4	out	of	5	demographic	variables:

>>>

covidtotals[demovars].isnull().sum(axis=0)

population									0

pop_density							12

median_age								24

gdp_per_capita				28
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hosp_beds									46

dtype:	int64

>>>	demovarsmisscnt	=

covidtotals[demovars].isnull().sum(axis=1)

>>>	demovarsmisscnt.value_counts()

0				156

1					24

2					12

3					10

4						8

dtype:	int64

3.	 List	the	countries	with	three	or	more	missing	values	for	the	demographic	data.

Index	alignment	and	Boolean	indexing	allow	us	to	use	the	count	of	missing

values	(demovarsmisscnt)	to	select	rows.	Append	the	location	to

the	demovars	list	to	see	the	country.	(We	only	show	the	first	five	of
these	countries	here.):

>>>

covidtotals.loc[demovarsmisscnt>=3,

['location']	+

demovars].head(5).T

iso_code												AND												AIA																	BES		\

location								Andorra							Anguilla				Bonaire

Sint	...			

population							77,265									15,002														26,221			
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pop_density									164												NaN																	NaN			

median_age										NaN												NaN																	NaN			

gdp_per_capita						NaN												NaN																	NaN			

hosp_beds											NaN												NaN																	NaN			

iso_code																											VGB													FRO		

location								British	Virgin

Islands		Faeroe	Islands		

population																						30,237										48,865		

pop_density																								208														35		

median_age																									NaN													NaN		

gdp_per_capita																					NaN													NaN		

hosp_beds																										NaN													NaN

		

>>>	type(demovarsmisscnt)

<class	'pandas.core.series.Series'>

4.	 Check	the	Covid	case	data	for	missing	values.

Notice	that	only	one	country	has	missing	values	for	any	of	this	data:

>>>

covidtotals[totvars].isnull().sum(axis=0)

location											0

total_cases								0

total_deaths							0

total_cases_pm					1
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total_deaths_pm				1

dtype:	int64

>>>	totvarsmisscnt	=

covidtotals[totvars].isnull().sum(axis=1)

>>>	totvarsmisscnt.value_counts()

0				209

2						1

dtype:	int64

>>>

covidtotals.loc[totvarsmisscnt>0].T

iso_code																									HKG

lastdate									2020-05-26	00:00:00

location																			Hong	Kong

total_cases																								0

total_deaths																							0

total_cases_pm																			NaN

total_deaths_pm																		NaN

population																	7,496,988

pop_density																				7,040

median_age																								45

gdp_per_capita																56,055

hosp_beds																								NaN
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5.	 Use	the	fillna	method	to	fix	the	missing	cases	data	for	the	one	country
affected	(Hong	Kong).

We	could	just	set	the	values	to	0,	since	the	numerator	is	0	in	both	cases.
However,	it	is	helpful	in	terms	of	code	reuse	to	use	the	correct	logic:

>>>

covidtotals.total_cases_pm.fillna(covidtotals.total_cases/

...			(covidtotals.population/1000000),

inplace=True)

>>>

covidtotals.total_deaths_pm.fillna(covidtotals.total_deaths/

...			(covidtotals.population/1000000),

inplace=True)

>>>

covidtotals[totvars].isnull().sum(axis=0)

location											0

total_cases								0

total_deaths							0

total_cases_pm					0

total_deaths_pm				0

dtype:	int64

These	steps	give	us	a	good	sense	of	the	number	of	missing	values	that	we	have
for	each	column,	and	which	countries	have	many	missing	values.
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How	it	works...
Step	2	shows	that	there	is	a	fair	bit	of	missing	data	for	the	demographic
variables,	particularly	for	the	number	of	hospital	beds.	18	countries	have	at	least
3	of	the	5	demographic	variables	missing.	We	will	either	have	to	exclude	those
variables	from	any	multivariate	analyses	we	will	do	in	the	future	or	impute
values	for	those	variables.	We	make	no	attempt	to	fix	those	values	here.	We	look
more	at	fixing	missing	values,	including	by	imputing	values,	in	subsequent
chapters.

The	key	Covid	case	data	is	relatively	free	of	missing	values.	We	have	one
country	with	missing	cases	or	death	data,	which	we	resolve	in	step	5.	We	use

fillna	to	fix	the	missing	value.	We	could	have	also	used	fillna	to

set	the	missing	value	to	0.

We	should	not	gloss	over	the	little	bit	of	pandas	magic	in	steps	2	and	3.	We

create	a	series,	demovarsmisscnt,	which	has	the	count	of
demographic	columns	that	have	missing	values	for	each	country.	We	are	able	to
use	that	series,	along	with	the	three	or	more	test	series

(demovarsmisscnt>=3),	because	of	pandas	index	alignment	and
Boolean	indexing.	That's	magic	I	say!

See	also
We	examine	other	pandas	techniques	for	fixing	missing	values	in	Chapter	6,
Cleaning	and	Exploring	Data	with	Series	Operations.
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Ident i fying	out l iers 	with	one
variable
The	concept	of	an	outlier	is	somewhat	subjective	but	is	closely	tied	to	the
properties	of	a	particular	distribution;	to	its	central	tendency,	spread,	and	shape.
We	make	assumptions	about	whether	a	value	is	expected	or	unexpected	based	on
how	likely	we	are	to	get	that	value	given	the	variable's	distribution.	We	are	more
inclined	to	view	a	value	as	an	outlier	if	it	is	multiple	standard	deviations	away
from	the	mean	and	it	is	from	a	distribution	that	is	approximately	normal;	one	that
is	symmetrical	(has	low	skew)	and	has	relatively	skinny	tails	(low	kurtosis).

This	becomes	clear	if	we	imagine	trying	to	identify	outliers	from	a	uniform
distribution.	There	is	no	central	tendency	and	there	are	no	tails.	Each	value	is
equally	likely.	If,	for	example,	Covid	cases	per	country	were	uniformly
distributed,	with	a	minimum	of	1	and	a	maximum	of	10,000,000,	neither	1	nor
10,000,000	would	be	considered	an	outlier.

We	need	to	understand	how	a	variable	is	distributed,	then,	before	we	can	identify
outliers.	Several	Python	libraries	provide	tools	to	help	us	understand	how
variables	of	interest	are	distributed.	We	use	a	couple	of	them	in	this	recipe	to
identify	when	a	value	is	sufficiently	out	of	range	to	be	of	concern.

Getting	ready
You	will	need	the	matplotlib,	statsmodels,	and	scipy

libraries,	in	addition	to	pandas	and	numpy,	to	run	the	code	in	this

recipe.	You	can	install	matplotlib,	statsmodels,	and
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scipy	by	entering	pip	install	matplotlib,	pip

install	statsmodels,	and	pip	install	scipy
in	a	terminal	client	or	PowerShell	(in	Windows).

We	continue	to	work	with	the	Covid	case	data.

How	to	do	it...
We	take	a	good	look	at	the	distribution	of	some	of	the	key	continuous	variables
in	the	Covid	data.	We	examine	the	central	tendency	and	shape	of	the	distribution,
generating	measures	and	visualizations	of	normality:

1.	 Load	the	pandas,	numpy,	matplotlib,

statsmodels,	and	scipy	libraries,	and	the	Covid	case	data	file.

Also,	set	up	the	Covid	case	and	demographic	columns:

>>>	import	pandas	as	pd

>>>	import	numpy	as	np

>>>	import	matplotlib.pyplot	as	plt

>>>	import	statsmodels.api	as	sm

>>>	import	scipy.stats	as	scistat

>>>	covidtotals	=

pd.read_csv("data/covidtotals.csv")

>>>	covidtotals.set_index("iso_code",

inplace=True)

>>>	totvars	=

['location','total_cases','total_deaths','total_cases_pm',
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...			'total_deaths_pm']

>>>	demovars	=

['population','pop_density','median_age','gdp_per_capita',

...			'hosp_beds']

2.	 Get	descriptive	statistics	for	the	Covid	case	data.

Create	a	data	frame	with	just	the	key	case	data:

>>>	covidtotalsonly	=

covidtotals.loc[:,	totvars]

>>>	covidtotalsonly.describe()

							total_cases		total_deaths		total_cases_pm		total_deaths_pm

count										210											210													210														210

mean								29,216									1,771											1,355															56

std								136,398									8,706											2,625														145

min														0													0															0																0

25%												176													4														93																1

50%										1,242												26													281																6

75%									10,117											241											1,801															32

max						1,790,191							104,383										19,771												1,238

3.	 Show	more	detailed	percentile	data.

Also	show	skewness	and	kurtosis.	Skewness	and	kurtosis	describe	how
symmetrical	the	distribution	is	and	how	fat	the	tails	of	the	distribution	are,
respectively.	Both	measures	are	significantly	higher	than	we	would	expect	if
our	variables	were	distributed	normally:
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>>>

covidtotalsonly.quantile(np.arange(0.0,

1.1,	0.1))

						total_cases		total_deaths		total_cases_pm		total_deaths_pm

0.00									0.00										0.00												0.00													0.00

0.10								22.90										0.00											18.00													0.00

0.20							105.20										2.00											56.29													0.38

0.30							302.00										6.70										115.43													1.72

0.40							762.00									12.00										213.97													3.96

0.50					1,242.50									25.50										280.93													6.15

0.60					2,514.60									54.60										543.96												12.25

0.70					6,959.80								137.20								1,071.24												25.95

0.80				16,847.20								323.20								2,206.30												49.97

0.90				46,513.10						1,616.90								3,765.14											138.90

1.00

1,790,191.00				104,383.00							19,771.35									1,237.55

>>>	covidtotalsonly.skew()

total_cases							10.80

total_deaths							8.93

total_cases_pm					4.40

total_deaths_pm				4.67

dtype:	float64

>>>	covidtotalsonly.kurtosis()
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total_cases							134.98

total_deaths							95.74

total_cases_pm					25.24

total_deaths_pm				27.24

dtype:	float64

4.	 Test	the	Covid	data	for	normality.

Use	the	Shapiro-Wilk	test	from	the	scipy	library.	Print	out	the	p-value

from	the	test.	(The	null	hypothesis	of	a	normal	distribution	can	be
rejected	at	the	95%	level	at	any	p-value	below	0.05.):

>>>	def	testnorm(var,	df):

...			stat,	p	=

scistat.shapiro(df[var])

...			return	p

...

>>>	testnorm("total_cases",

covidtotalsonly)

3.753789128593843e-29

>>>	testnorm("total_deaths",

covidtotalsonly)

4.3427896631016077e-29

>>>	testnorm("total_cases_pm",

covidtotalsonly)

1.3972683006509067e-23

Telegram Channel @nettrain



>>>	testnorm("total_deaths_pm",

covidtotalsonly)

1.361060423265974e-25

5.	 Show	normal	quantile-quantile	plots	(qqplots)	of	total	cases	and	total
cases	per	million.

The	straight	lines	show	what	the	distributions	would	look	like	if	they	were
normal:

>>>

sm.qqplot(covidtotalsonly[['total_cases']].

\

...			sort_values(['total_cases']),

line='s')

>>>	plt.title("QQ	Plot	of	Total

Cases")

>>>

sm.qqplot(covidtotals[['total_cases_pm']].

\

...			sort_values(['total_cases_pm']),

line='s')

>>>	plt.title("QQ	Plot	of	Total	Cases

Per	Million")

>>>	plt.show()

This	results	in	the	following	scatter	plots:
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Figure	4.1	–	Distribution	of	Covid	cases	compared	with	a	normal	distribution

Even	when	adjusted	by	population	with	the	total	cases	per	million	column,	the
distribution	is	substantially	different	from	normal:

Figure	4.2	–	Distribution	of	Covid	cases	per	million	compared	with	a	normal
distribution
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6.	 Show	the	outlier	range	for	total	cases.

One	way	to	define	an	outlier	for	a	continuous	variable	is	by	distance	above	the
third	quartile	or	below	the	first	quartile.	If	that	distance	is	more	than	1.5	times
the	interquartile	range	(the	distance	between	the	first	and	third	quartiles),	that
value	is	considered	an	outlier.	In	this	case,	since	only	0	or	positive	values	are
possible,	any	total	cases	value	above	25,028	is	considered	an	outlier:

>>>	thirdq,	firstq	=

covidtotalsonly.total_cases.quantile(0.75),

covidtotalsonly.total_cases.quantile(0.25)

>>>	interquartilerange	=	1.5*(thirdq-

firstq)

>>>	outlierhigh,	outlierlow	=

interquartilerange+thirdq,

firstq-interquartilerange

>>>	print(outlierlow,	outlierhigh,

sep="	<-->	")

-14736.125	<-->	25028.875

7.	 Generate	a	data	frame	of	outliers	and	write	it	to	Excel.

Iterate	over	the	four	Covid	case	columns.	Calculate	the	outlier	thresholds	for
each	column	as	we	did	in	the	previous	step.	Select	from	the	data	frame	those
rows	above	the	high	threshold	or	below	the	low	threshold.	Add	columns	that

indicate	the	variable	examined	(varname)	for	outliers	and	the	threshold
levels:

>>>	def	getoutliers():
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...			dfout	=

pd.DataFrame(columns=covidtotals.columns,

data=None)

...			for	col	in

covidtotalsonly.columns[1:]:

...					thirdq,	firstq	=

covidtotalsonly[col].quantile(0.75),\

...							covidtotalsonly[col].quantile(0.25)

...					interquartilerange	=	1.5*

(thirdq-firstq)

...					outlierhigh,	outlierlow	=

										interquartilerange+thirdq,\

...							firstq-interquartilerange

...					df	=

covidtotals.loc[(covidtotals[col]>outlierhigh)

|	\

...							(covidtotals[col]

<outlierlow)]

...					df	=	df.assign(varname	=	col,

											threshlow	=

outlierlow,\

...								threshhigh	=	outlierhigh)

...					dfout	=	pd.concat([dfout,

df])

...			return	dfout
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...

>>>	outliers	=	getoutliers()

>>>	outliers.varname.value_counts()

total_deaths							36

total_cases								33

total_deaths_pm				28

total_cases_pm					17

Name:	varname,	dtype:	int64

>>>

outliers.to_excel("views/outlierscases.xlsx")

8.	 Look	a	little	more	closely	at	outliers	for	cases	per	million.

Use	the	varname	column	we	created	in	the	previous	step	to	select	the

outliers	for	total_cases_pm.	Also	show	columns

(pop_density	and	gdp_per_capita)	that	might	help	to
explain	the	extreme	values	and	the	interquartile	range	for	those	columns:

>>>

outliers.loc[outliers.varname=="total_cases_pm",\

...			['location','total_cases_pm','pop_density','gdp_per_capita']].\

...			sort_values(['total_cases_pm'],

ascending=False)

										location		total_cases_pm		pop_density		gdp_per_capita

SMR					San

Marino							19,771.35							556.67							56,861.47
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QAT										Qatar							19,753.15							227.32						116,935.60

VAT								Vatican							14,833.13										nan													nan

AND								Andorra								9,888.05							163.75													nan

BHR								Bahrain								6,698.47					1,935.91							43,290.71

LUX					Luxembourg								6,418.78							231.45							94,277.96

KWT									Kuwait								6,332.42							232.13							65,530.54

SGP						Singapore								5,962.73					7,915.73							85,535.38

USA		United

States								5,408.39								35.61							54,225.45

ISL								Iceland								5,292.31									3.40							46,482.96

CHL										Chile								5,214.84								24.28							22,767.04

ESP										Spain								5,120.95								93.11							34,272.36

IRL								Ireland								5,060.96								69.87							67,335.29

BEL								Belgium								5,037.35							375.56							42,658.58

GIB						Gibraltar								5,016.18					3,457.10													nan

PER											Peru								4,988.38								25.13							12,236.71

BLR								Belarus								4,503.60								46.86							17,167.97

>>>

covidtotals[['pop_density','gdp_per_capita']].quantile([0.25,0.5,0.75])

						pop_density		gdp_per_capita

0.25								37.42								4,485.33

0.50								87.25							13,183.08

0.75							214.12							28,556.53
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9.	 Show	a	histogram	of	total	cases:

>>>

plt.hist(covidtotalsonly['total_cases']/1000,

bins=7)

>>>	plt.title("Total	Covid	Cases

(thousands)")

>>>	plt.xlabel('Cases')

>>>	plt.ylabel("Number	of	Countries")

>>>	plt.show()

This	code	produces	the	following	plot:

Figure	4.3	–	Histogram	of	total	Covid	cases

10.	 Perform	a	log	transformation	of	the	Covid	data.	Show	a	histogram	of	the	log
transformation	of	total	cases:
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>>>	covidlogs	=

covidtotalsonly.copy()

>>>	for	col	in

covidtotalsonly.columns[1:]:

...			covidlogs[col]	=

np.log1p(covidlogs[col])

>>>

plt.hist(covidlogs['total_cases'],

bins=7)

>>>	plt.title("Total	Covid	Cases

(log)")

>>>	plt.xlabel('Cases')

>>>	plt.ylabel("Number	of	Countries")

>>>	plt.show()

This	code	produces	the	following:
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Figure	4.4	–	Histogram	of	total	Covid	cases	with	log	transformation

The	tools	we	used	in	the	preceding	steps	tell	us	a	fair	bit	about	how	Covid	cases
and	deaths	are	distributed,	and	about	where	outliers	are	located.

How	it	works…
The	percentile	data	shown	in	step	3	reflects	the	skewness	of	the	cases	and	deaths
data.	If,	for	example,	we	look	at	the	range	of	values	between	the	20th	and	30th
percentiles,	and	compare	it	with	the	range	from	the	70th	to	the	80th	percentiles,
we	see	that	the	range	is	much	greater	in	the	higher	percentiles	for	each	variable.
This	is	confirmed	by	the	very	high	values	for	skewness	and	kurtosis,	compared

with	normal	distribution	values	of	0	and	3,	respectively.	We	run	formal	tests	of
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normality	in	step	4,	which	indicate	that	the	distributions	of	the	Covid	variables
are	not	normal	at	high	levels	of	significance.

This	is	consistent	with	the	qqplots	we	run	in	step	5.	The	distributions	of
both	total	cases	and	total	cases	per	million	differ	significantly	from	normal,	as
represented	by	the	straight	line.	Many	cases	hover	around	zero,	and	there	is	a
dramatic	increase	in	slope	at	the	right	tail.

We	identify	outliers	in	steps	6	and	7.	Using	1.5	times	the	interquartile	range	to
determine	outliers	is	a	reasonable	rule	of	thumb.	I	like	to	output	those	values	to
an	Excel	file,	along	with	associated	data,	to	see	what	patterns	I	can	detect	in	the
data.	This	often	leads	to	more	questions,	of	course.	We	will	try	to	answer	some
of	them	in	the	next	recipe,	but	one	question	we	can	consider	now	is	what
accounts	for	the	countries	with	high	cases	per	million,	displayed	in	step	8.	Some
of	the	countries	with	extreme	values	are	very	small,	in	terms	of	land	mass,	so
perhaps	population	density	matters.	But	half	of	the	countries	on	this	list	are	near
or	below	the	75th	percentile	in	population	density.	On	the	other	hand,	most
countries	on	this	list	are	above	the	75th	percentile	in	GDP	per	capita.	It	is	worth
exploring	these	bivariate	relationships	further,	which	we	do	in	subsequent
recipes.

Our	identification	of	outliers	in	step	7	assumes	a	normal	distribution,	an
assumption	that	we	have	shown	to	be	unwarranted.	Looking	again	at	the
distribution	in	step	9,	it	seems	much	more	like	a	log-normal	distribution,	with

values	clustered	around	0	and	a	right	skew.	We	transform	the	data	in	step	10	and
plot	the	results	of	the	transformation.

There's	more…
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We	could	have	also	used	standard	deviation,	rather	than	interquartile	ranges,	to
identify	outliers	in	steps	6	and	7.

I	should	add	here	that	outliers	are	not	necessarily	data	collection	or	measurement
errors,	and	we	may	or	may	not	need	to	make	adjustments	to	the	data.	However,
extreme	values	can	have	a	meaningful	and	persistent	impact	on	our	analysis,
particularly	with	small	datasets	like	this	one.

The	overall	impression	we	should	have	of	the	Covid	case	data	is	that	it	is
relatively	clean;	that	is,	there	are	not	many	invalid	values,	narrowly	defined.
Looking	at	each	variable	independently	of	how	it	moves	with	other	variables
does	not	identify	much	that	screams	out	as	a	clear	data	error.	However,	the
distribution	of	the	variables	is	quite	problematic	statistically.	Building	statistical
models	dependent	on	these	variables	will	be	complicated,	as	we	might	have	to
rule	out	parametric	tests.

It	is	also	worth	remembering	that	our	sense	of	what	constitutes	an	outlier	is
shaped	by	our	assumption	of	a	normal	distribution.	If,	instead,	we	allow	our
expectations	to	be	guided	by	the	actual	distribution	of	the	data,	we	have	a
different	understanding	of	extreme	values.	If	our	data	reflects	a	social,	or
biological,	or	physical	process	that	is	inherently	not	normally	distributed
(uniform,	logarithmic,	exponential,	Weibull,	Poisson,	and	so	on),	our	sense	of
what	constitutes	an	outlier	should	adjust	accordingly.

See	also
Box	plots	might	have	also	been	illuminating	here.	We	do	a	few	box	plots	on	this
data	in	Chapter	5,	Using	Visualizations	for	the	Identification	of	Unexpected
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Values.

We	explore	bivariate	relationships	in	this	same	dataset	in	the	next	recipe	for	any
insights	they	might	provide	about	outliers	and	unexpected	values.	In	subsequent
chapters,	we	consider	strategies	for	imputing	values	for	missing	data	and	for
making	adjustments	to	extreme	values.

Ident i fying	out l iers 	and
unexpected	values 	 in 	bivar iate
relat ionships
A	value	might	be	unexpected,	even	if	it	is	not	an	extreme	value,	when	it	does	not
deviate	significantly	from	the	distribution	mean.	Some	values	for	a	variable	are
unexpected	when	a	second	variable	has	certain	values.	This	is	easy	to	illustrate
when	one	variable	is	categorical	and	the	other	is	continuous.

The	following	diagram	illustrates	the	number	of	bird	sightings	per	day	over	a
several	year	period,	but	shows	different	distributions	for	each	of	the	two	sites.
One	site	has	a	mean	sightings	per	day	of	33,	and	the	other	52.	(This	is	fictional
data.)	The	overall	mean	(not	shown)	is	42.	What	should	we	make	of	a	value	of
58	for	daily	sightings?	Is	that	an	outlier?	That	clearly	depends	on	which	of	the
two	sites	was	being	observed.	If	there	were	58	sightings	on	a	day	at	site	A,	58
would	be	an	unusually	high	number.	Not	so	for	site	B,	where	58	sightings	would
not	be	very	different	from	the	mean	for	that	site:
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Figure	4.5	–	Daily	bird	sightings	by	site

This	hints	at	useful	rule	of	thumb:	whenever	a	variable	of	interest	is	significantly
correlated	with	another	variable,	we	should	take	that	relationship	into	account
when	trying	to	identify	outliers	(or	any	statistical	analysis	with	that	variable
actually).	It	is	helpful	to	state	this	a	little	more	precisely,	and	extend	it	to	cases
where	both	variables	are	continuous.	If	we	assume	a	linear	relationship	between
variable	x	and	variable	y,	we	can	describe	that	relationship	with	the	familiar	y	=
mx	+	b	equation,	where	m	is	the	slope	and	b	is	the	y-intercept.	We	can	then
expect	for	y	to	increase	by	m	for	every	1	unit	increase	in	x.	Unexpected	values
are	those	that	deviate	substantially	from	this	relationship,	where	the	value	of	y	is
much	higher	or	lower	than	what	would	be	predicted	given	the	value	of	x.	This
can	be	extended	to	multiple	x,	or	predictor,	variables.

In	this	recipe,	we	demonstrate	how	to	identify	outliers	and	unexpected	values	by
examining	the	relationship	of	a	variable	to	one	other	variable.	In	subsequent
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recipes	in	this	chapter,	we	use	multivariate	techniques	to	make	additional
improvements	in	our	outlier	detection.

Getting	ready
We	use	the	matplotlib	and	seaborn	libraries	in	this	recipe.	You

can	install	them	with	pip	by	entering	pip	install

matplotlib	and	pip	install	seaborn	with	a

terminal	client	or	powershell	(in	Windows).

How	to	do	it...
We	examine	the	relationship	between	total	cases	and	total	deaths.	We	take	a
closer	look	at	those	countries	where	deaths	are	higher	or	lower	than	expected
given	the	number	of	cases:

1.	 Load	pandas,	numpy,	matplotlib,	seaborn,	and	the
Covid	cumulative	data:

>>>	import	pandas	as	pd

>>>	import	numpy	as	np

>>>	import	matplotlib.pyplot	as	plt

>>>	import	seaborn	as	sns

>>>	covidtotals	=

pd.read_csv("data/covidtotals.csv")

>>>	covidtotals.set_index("iso_code",

inplace=True)
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>>>	totvars	=

['location','total_cases','total_deaths','total_cases_pm',

...			'total_deaths_pm']

>>>	demovars	=

['population','pop_density','median_age','gdp_per_capita',

...			'hosp_beds']

2.	 Generate	a	correlation	matrix	for	the	cumulative	and	demographic	columns.

Unsurprisingly,	there	is	a	very	high	correlation	(0.93)	between	total	cases	and
total	deaths,	and	a	smaller	(0.59)	but	still	substantial	one	between	total	cases
per	million	and	total	deaths	per	million.	There	is	a	strong	(0.65)	relationship
between	GDP	per	capita	and	cases	per	million:

>>>

covidtotals.corr(method="pearson")

															total_cases		total_deaths		total_cases_pm		total_deaths_pm		

total_cases											1.00										0.93												0.18													0.25			

total_deaths										0.93										1.00												0.18													0.39			

total_cases_pm								0.18										0.18												1.00													0.59			

total_deaths_pm							0.25										0.39												0.59													1.00			

population												0.27										0.21											-0.06												-0.01			

pop_density										-0.03									-0.03												0.11													0.03			

median_age												0.16										0.21												0.31													0.39			

gdp_per_capita								0.19										0.20												0.65													0.38			

hosp_beds													0.03										0.02												0.08													0.12			
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											population		pop_density		median_age		gdp_per_capita		hosp_beds		

total_cases						0.27								-0.03								0.16												0.19							0.03		

total_deaths					0.21								-0.03								0.21												0.20							0.02		

total_cases_pm		-0.06									0.11								0.31												0.65							0.08		

total_deaths_pm

-0.01									0.03								0.39												0.38							0.12		

population							1.00								-0.02								0.02											-0.06						-0.04		

pop_density					-0.02									1.00								0.18												0.32							0.31		

median_age							0.02									0.18								1.00												0.65							0.66		

gdp_per_capita		-0.06									0.32								0.65												1.00							0.30		

hosp_beds							-0.04									0.31								0.66												0.30							1.00

3.	 Check	to	see	whether	some	countries	have	unexpectedly	high	or	low	total
deaths,	given	total	cases.

First	create	a	data	frame	with	only	the	cases	and	deaths	columns.	Use	qcut
to	create	a	column	that	breaks	the	data	into	quantiles.	Show	a	crosstab	of	total
cases	quantiles	by	total	deaths	quantiles:

>>>	covidtotalsonly	=

covidtotals.loc[:,	totvars]

>>>	covidtotalsonly['total_cases_q']

=	pd.\

...			qcut(covidtotalsonly['total_cases'],

...			labels=['very

low','low','medium',

Telegram Channel @nettrain



...			'high','very	high'],	q=5,

precision=0)

>>>	covidtotalsonly['total_deaths_q']

=	pd.\

...			qcut(covidtotalsonly['total_deaths'],

...			labels=['very

low','low','medium',

...			'high','very	high'],	q=5,

precision=0)

>>>

pd.crosstab(covidtotalsonly.total_cases_q,

...			covidtotalsonly.total_deaths_q)

total_deaths_q		very

low		low		medium		high		very

high

total_cases_q																																									

very

low														34				7							1					0										0

low																			12			19						10					1										0

medium																	1			13						15				13										0

high																			0				0						12				24										6

very

high														0				0							2					4									36

4.	 Take	a	look	at	countries	that	do	not	fit	along	the	diagonal.
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These	are	countries	with	very	high	total	cases	but	medium	total	deaths.	(There
are	no	countries	with	high	total	cases	and	low	or	very	low	deaths.)	Also,	look

at	countries	with	low	cases	but	high	deaths.	(Since	the	covidtotals

and	covidtotalsonly	data	frames	have	the	same	index,	we	can
use	Boolean	series	created	from	the	latter	to	return	selected	rows	from	the
former.):

>>>

covidtotals.loc[(covidtotalsonly.total_cases_q=="very

high")	&

(covidtotalsonly.total_deaths_q=="medium")].T

iso_code																									QAT																		SGP

lastdate									2020-06-01

00:00:00		2020-06-01	00:00:00

location																							Qatar												Singapore

total_cases																				56910																34884

total_deaths																						38																			23

total_cases_pm													19,753.15													5,962.73

total_deaths_pm																13.19																	3.93

population														2,881,060.00									5,850,343.00

pop_density																			227.32													7,915.73

median_age																					31.90																42.40

gdp_per_capita												116,935.60												85,535.38

hosp_beds																							1.20																	2.40
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>>>

covidtotals.loc[(covidtotalsonly.total_cases_q=="low")

&

(covidtotalsonly.total_deaths_q=="high")].T

iso_code																									YEM

lastdate									2020-06-01	00:00:00

location																							Yemen

total_cases																						323

total_deaths																						80

total_cases_pm																	10.83

total_deaths_pm																	2.68

population													29,825,968.00

pop_density																				53.51

median_age																					20.30

gdp_per_capita														1,479.15

hosp_beds																							0.70

>>>	covidtotals.hosp_beds.mean()

3.012670731707318

5.	 Do	a	scatter	plot	of	total	cases	by	total	deaths.

Use	Seaborn's	regplot	method	to	generate	a	linear	regression	line	in
addition	to	the	scatter	plot:

>>>	ax	=	sns.regplot(x="total_cases",

y="total_deaths",
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data=covidtotals)

>>>	ax.set(xlabel="Cases",

ylabel="Deaths",	title="Total

Covid	Cases	and	Deaths	by

Country")

>>>	plt.show()

This	produces	the	following	scatter	plot:

Figure	4.6	–	Scatter	plot	of	total	cases	and	deaths	with	a	linear	regression	line

6.	 Examine	unexpected	values	above	the	regression	line.

It	is	good	to	take	a	closer	look	at	countries	with	cases	and	deaths	coordinates
that	are	noticeably	above	or	below	the	regression	line	through	the	data.	There
are	four	countries	with	fewer	than	300,000	cases	and	more	than	20,000	deaths:

>>>

covidtotals.loc[(covidtotals.total_cases<300000)
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&

(covidtotals.total_deaths>20000)].T

iso_code																									FRA																		ITA		\

lastdate									2020-06-01

00:00:00		2020-06-01

00:00:00			

location																						France																Italy			

total_cases																			151753															233019			

total_deaths																			28802																33415			

total_cases_pm														2,324.88													3,853.99			

total_deaths_pm															441.25															552.66			

population													65,273,512.00								60,461,828.00			

pop_density																			122.58															205.86			

median_age																					42.00																47.90			

gdp_per_capita													38,605.67												35,220.08			

hosp_beds																							5.98																	3.18			

iso_code																									ESP																		GBR		

lastdate									2020-05-31

00:00:00		2020-06-01	00:00:00		

location																							Spain							United

Kingdom		

total_cases																			239429															274762		

total_deaths																			27127																38489		

total_cases_pm														5,120.95													4,047.40		
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total_deaths_pm															580.20															566.97		

population													46,754,783.00								67,886,004.00		

pop_density																				93.11															272.90		

median_age																					45.50																40.80		

gdp_per_capita													34,272.36												39,753.24		

hosp_beds																							2.97																	2.54

7.	 Examine	unexpected	values	below	the	regression	line.

There	is	one	country	with	more	than	300,000	cases	but	fewer	than	10,000
deaths:

>>>

covidtotals.loc[(covidtotals.total_cases>300000)

&

(covidtotals.total_deaths<10000)].T

iso_code																									RUS

lastdate									2020-06-01	00:00:00

location																						Russia

total_cases																			405843

total_deaths																				4693

total_cases_pm														2,780.99

total_deaths_pm																32.16

population												145,934,460.00

pop_density																					8.82

median_age																					39.60
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gdp_per_capita													24,765.95

hosp_beds																							8.05

8.	 Do	a	scatter	plot	of	total	cases	per	million	by	total	deaths	per	million:

>>>	ax	=

sns.regplot(x="total_cases_pm",

y="total_deaths_pm",

data=covidtotals)

>>>	ax.set(xlabel="Cases	Per

Million",	ylabel="Deaths	Per

Million",	title="Total	Covid

Cases	per	Million	and	Deaths

per	Million	by	Country")

>>>	plt.show()

This	produces	the	following	scatter	plot:
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Figure	4.7	–	Scatter	plot	of	cases	and	deaths	per	million	with	a	linear
regression	line

9.	 Examine	deaths	per	million	above	and	below	the	regression	line:

>>>

covidtotals.loc[(covidtotals.total_cases_pm<7500)

\

...			&

(covidtotals.total_deaths_pm>250),\

...			['location','total_cases_pm','total_deaths_pm']]

																											location		total_cases_pm		total_deaths_pm

iso_code																																																												

BEL																									Belgium											5,037														817

FRA																										France											2,325														441

IRL																									Ireland											5,061														335

IMN																					Isle	of

Man											3,951														282

ITA																											Italy											3,854														553

JEY																										Jersey											3,047														287

NLD																					Netherlands											2,710														348

SXM							Sint	Maarten	(Dutch

part)											1,796														350

ESP																											Spain											5,121														580

SWE																										Sweden											3,717														435
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GBR																		United

Kingdom											4,047														567

USA																			United

States											5,408														315

>>>

covidtotals.loc[(covidtotals.total_cases_pm>5000)

\

...			&

(covidtotals.total_deaths_pm<=50),

\

...			['location','total_cases_pm','total_deaths_pm']]

											location		total_cases_pm		total_deaths_pm

iso_code																																												

BHR									Bahrain											6,698															11

GIB							Gibraltar											5,016																0

ISL									Iceland											5,292															29

KWT										Kuwait											6,332															50

QAT											Qatar										19,753															13

SGP							Singapore											5,963																4

VAT									Vatican										14,833																0

The	preceding	steps	examined	the	relationship	between	variables	in	order	to
identify	outliers.
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How	it	works…
A	number	of	questions	are	raised	by	looking	at	the	bivariate	relationships	that
did	not	surface	in	our	univariate	exploration	in	the	previous	recipe.	There	is
confirmation	of	anticipated	relationships,	such	as	with	total	cases	and	total
deaths,	but	this	makes	deviations	from	this	all	the	more	curious.	There	are
possible	substantive	explanations	for	unusually	high	death	rates,	given	a	certain
number	of	cases,	but	measurement	error	or	poor	reporting	of	cases	cannot	be
ruled	out	either.

Step	2	shows	a	high	correlation	(0.93)	between	total	cases	and	total	deaths,	but
there	is	variation	even	there.	We	divide	the	cases	and	deaths	into	quantiles	in
step	3	and	then	do	a	crosstab	of	the	quantile	values.	Most	countries	are	along	the
diagonal	or	close	to	it.	However,	two	countries	have	a	very	high	number	of	cases
but	medium	deaths,	Qatar	and	Singapore.	This	is	also	a	reminder	that	both
countries	have	very	high	total	cases	per	million,	well	into	the	90 	percentile.	It	is
reasonable	to	wonder	if	there	are	potential	reporting	issues.

One	country,	Yemen,	had	a	low	number	of	cases	but	a	high	number	of	deaths.
This	could	perhaps	be	seen	as	consistent	with	the	very	low	number	of	hospital
beds	per	100,000	people	in	Yemen.	But	it	could	also	mean	that	coronavirus	cases
have	been	under-reported.

We	do	a	scatter	plot	in	step	5	of	total	cases	and	deaths.	The	strong	upward
sloping	relationship	between	the	two	is	confirmed,	but	there	are	a	number	of
countries	whose	deaths	are	above	the	regression	line.	We	can	see	that	four
countries	(France,	Italy,	Spain,	and	Great	Britain)	have	higher	deaths	than	would
be	predicted	by	the	number	of	cases.	One	country	(Russia)	has	a	much	lower

th
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number	of	deaths.	It	is	at	least	worth	wondering	about	whether	this	is	a	reporting
problem,	or	reflects	differences	in	how	countries	define	a	Covid	death.

Not	surprisingly,	there	is	even	more	scatter	around	the	regression	line	in	the
scatter	plot	of	cases	per	million	and	deaths	per	million.	Countries	such	as
Belgium,	France,	Ireland,	Italy,	and	the	Netherlands	have	much	higher	deaths	per
million	than	the	number	of	cases	per	million	would	suggest.	Countries	such	as
Bahrain,	Iceland,	Kuwait,	Qatar,	and	Singapore	have	significantly	lower	rates.

There's	more…
We	are	beginning	to	get	a	good	sense	of	what	our	data	looks	like,	but	the	data	in
this	form	does	not	enable	us	to	examine	how	the	univariate	distributions	and
bivariate	relationships	might	change	over	time.	For	example,	one	reason	why
countries	might	have	more	deaths	per	million	than	the	number	of	cases	per
million	would	indicate	could	be	that	more	time	has	passed	since	the	first
confirmed	cases.	We	are	not	able	to	explore	that	in	the	cumulative	data.	We	need
the	daily	data	for	that,	which	we	look	at	in	subsequent	chapters.

This	recipe,	and	the	previous	one,	show	how	much	data	cleaning	can	bleed	into
exploratory	data	analysis,	even	when	you	are	first	starting	to	get	a	sense	of	your
data.	I	would	definitely	draw	a	distinction	between	data	exploration	and	what	we
are	doing	here.	We	are	trying	to	get	a	sense	of	how	the	data	hangs	together,	why
certain	variables	take	on	certain	values	in	certain	situations	and	not	others.	We
want	to	get	to	the	point	where	there	are	not	huge	surprises	when	we	begin	to	do
the	analysis.
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I	find	it	helpful	to	do	small	things	to	formalize	this	process.	I	use	different
naming	conventions	for	files	that	are	not	quite	ready	for	analysis.	If	nothing	else,
this	helps	remind	me	that	any	numbers	produced	at	this	point	are	far	from	ready
for	distribution.

See	also
We	still	have	not	done	much	to	examine	possible	data	issues	that	only	become
apparent	when	examining	subsets	of	data;	for	example,	positive	wage	income
values	for	people	who	say	they	are	not	working	(both	variables	are	on	the
National	Longitudinal	Survey).	We	do	that	in	the	next	recipe.

We	do	much	more	with	Matplotlib	and	Seaborn	in	Chapter	5,	Using
Visualizations	for	the	Identification	of	Unexpected	Values.

Using	subset t ing	 to 	examine
logical 	 inconsis tencies 	 in
variable 	 re lat ionships
At	a	certain	point,	data	issues	come	down	to	deductive	logic	problems,	such	as
variable	x	has	to	be	greater	than	some	quantity	a	when	variable	y	is	less	than
some	quantity	b.	Once	we	are	through	some	initial	data	cleaning,	it	is	important

to	check	for	logical	inconsistencies.	pandas	makes	this	kind	of	error

checking	relatively	straightforward	with	subsetting	tools	such	as	loc	and
Boolean	indexing.	This	can	be	combined	with	summary	methods	on	series	and
data	frames	to	allow	us	to	easily	compare	values	for	a	particular	row	to	values
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for	the	whole	dataset	or	some	subset	of	rows.	We	can	also	easily	aggregate	over
columns.	Just	about	any	question	we	might	have	about	the	logical	relationships
between	variables	can	be	answered	with	these	tools.	We	work	through	some
examples	in	this	recipe.

Getting	ready
We	will	work	with	the	National	Longitudinal	Survey	of	Youth	(NLS),	mainly

with	data	on	employment	and	education.	We	use	apply	and	lambda
functions	several	times	in	this	recipe,	but	go	into	more	detail	on	their	use	in
Chapter	7,	Fixing	Messy	Data	when	Aggregating.	It	is	not	necessary	to	review
Chapter	7	to	follow	along,	however,	even	if	you	have	no	experience	with	those
tools.

DATA	NOTE
The	NLS,	administered	by	the	United	States	Bureau	of	Labor	Statistics,	is	a
longitudinal	survey	of	individuals	who	were	in	high	school	in	1997	when	the
survey	started.	Participants	were	surveyed	each	year	through	2017.

How	to	do	it…
We	run	a	number	of	logical	checks	on	the	NLS	data,	such	as	individuals	with
post-graduate	enrollment	but	no	undergraduate	enrollment,	or	having	wage
income	but	no	weeks	worked.	We	also	check	for	large	changes	in	key	values	for
a	given	individual	from	one	period	to	the	next:
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1.	 Import	pandas	and	numpy,	and	then	load	the	NLS	data:

>>>	import	pandas	as	pd

>>>	import	numpy	as	np

>>>	nls97	=

pd.read_csv("data/nls97.csv")

>>>	nls97.set_index("personid",

inplace=True)

2.	 Look	at	some	of	the	employment	and	education	data.

The	dataset	has	weeks	worked	each	year	from	2000	through	2017,	and	college
enrollment	status	each	month	from	February	1997	through	October	2017.	We

use	the	ability	of	the	loc	accessor	to	choose	all	columns	from	the	column
indicated	on	the	left	of	the	colon	through	the	column	indicated	on	the	right;

for	example,	nls97.loc[:,

"colenroct09":"colenrfeb14"]:

>>>

nls97[['wageincome','highestgradecompleted','highestdegree']].head(3).T

personid																							100061										100139			100284

wageincome																					12,500									120,000			58,000

highestgradecompleted														13														12								7

highestdegree										2.	High

School		2.	High	School		0.	None

>>>	nls97.loc[:,

"weeksworked12":"weeksworked17"].head(3).T

personid							100061		100139		100284
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weeksworked12						40						52							0

weeksworked13						52						52					nan

weeksworked14						52						52						11

weeksworked15						52						52						52

weeksworked16						48						53						47

weeksworked17						48						52							0

>>>	nls97.loc[:,

"colenroct09":"colenrfeb14"].head(3).T

																								100061											100139											100284

colenroct09				1.	Not	enrolled		1.

Not	enrolled		1.	Not	enrolled

colenrfeb10				1.	Not	enrolled		1.

Not	enrolled		1.	Not	enrolled

colenroct10				1.	Not	enrolled		1.

Not	enrolled		1.	Not	enrolled

colenrfeb11				1.	Not	enrolled		1.

Not	enrolled		1.	Not	enrolled

colenroct11		3.	4-year	college		1.

Not	enrolled		1.	Not	enrolled

colenrfeb12		3.	4-year	college		1.

Not	enrolled		1.	Not	enrolled

colenroct12		3.	4-year	college		1.

Not	enrolled		1.	Not	enrolled
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colenrfeb13				1.	Not	enrolled		1.

Not	enrolled		1.	Not	enrolled

colenroct13				1.	Not	enrolled		1.

Not	enrolled		1.	Not	enrolled

colenrfeb14				1.	Not	enrolled		1.

Not	enrolled		1.	Not	enrolled

3.	 Show	individuals	with	wage	income	but	no	weeks	worked.

The	wage	income	variable	reflects	wage	income	for	2016:

>>>

nls97.loc[(nls97.weeksworked16==0)

&	nls97.wageincome>0,

['weeksworked16','wageincome']]

										weeksworked16		wageincome

personid																											

102625																0							1,200

109403																0							5,000

118704																0						25,000

130701																0						12,000

131151																0						65,000

...																	...									...

957344																0						90,000

966697																0						65,000

969334																0							5,000
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991756																0							9,000

992369																0						35,000

[145	rows	x	2	columns]

4.	 Check	for	whether	an	individual	was	ever	enrolled	in	a	4-year	college	course.

Chain	several	methods.	First,	create	a	data	frame	with	columns	that	start	with

colenr	(nls97.filter(like="colenr")).
These	are	the	college	enrollment	columns	for	October	and	February	of	each

year.	Then,	use	apply	to	run	a	lambda	function	that	examines	the

first	character	of	each	colenr	column	(apply(lambda	x:

x.str[0:1]=='3')).	This	returns	a	value	of	True	or

False	for	all	of	the	college	enrollment	columns;	True	if	the	first	value

of	the	string	is	3,	meaning	enrollment	at	a	4-year	college.	Finally,	use	the

any	function	to	test	whether	any	of	the	values	returned	from	the	previous

step	has	a	value	of	True	(any(axis=1)).	This	will	identify
whether	the	individual	was	enrolled	in	a	4-year	college	course	between
February	1997	and	October	2017.	The	first	statement	here	shows	the	results	of
the	first	two	steps	for	explanatory	purposes	only.	Only	the	second	statement
needs	to	be	run	to	get	the	desired	results:	whether	the	individual	was	enrolled
at	a	4-year	college	course	at	some	point:

>>>

nls97.filter(like="colenr").apply(lambda

x:	x.str[0:1]=='3').head(2).T

personid					100061		100139

...

colenroct09			False			False

Telegram Channel @nettrain



colenrfeb10			False			False

colenroct10			False			False

colenrfeb11			False			False

colenroct11				True			False

colenrfeb12				True			False

colenroct12				True			False

colenrfeb13			False			False

colenroct13			False			False

colenrfeb14			False			False

...

>>>

nls97.filter(like="colenr").apply(lambda

x:	x.str[0:1]=='3').\

...			any(axis=1).head(2)

personid

100061					True

100139				False

dtype:	bool

5.	 Show	individuals	with	post-graduate	enrollment	but	no	bachelor's	enrollment.

We	can	use	what	we	tested	in	step	4	to	do	some	checking.	We	want

individuals	who	have	a	4	(graduate	enrollment)	as	the	first	character	for

colenr	any	month,	but	who	never	had	a	3	(bachelor	enrollment).	Note
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the	"~"	before	the	second	half	of	the	test,	for	negation.	There	are	22
individuals	who	fall	into	this	category:

>>>	nobach	=

nls97.loc[nls97.filter(like="colenr").\

...			apply(lambda	x:

x.str[0:1]=='4').\

...			any(axis=1)	&

~nls97.filter(like="colenr").\

...			apply(lambda	x:

x.str[0:1]=='3').\

...			any(axis=1),

"colenrfeb97":"colenroct17"]

>>>	len(nobach)

22

>>>	nobach.head(3).T

personid																153051															154535															184721

...

colenroct08				1.	Not

enrolled						1.	Not

enrolled						1.	Not	enrolled

colenrfeb09				1.	Not

enrolled						1.	Not

enrolled						1.	Not	enrolled
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colenroct09				1.	Not

enrolled						1.	Not

enrolled						1.	Not	enrolled

colenrfeb10				1.	Not

enrolled						1.	Not

enrolled						1.	Not	enrolled

colenroct10				1.	Not	enrolled		4.

Graduate	program		4.	Graduate

program

colenrfeb11				1.	Not	enrolled		4.

Graduate

program																		NaN

colenroct11				1.	Not	enrolled		4.

Graduate

program																		NaN

colenrfeb12				1.	Not	enrolled		4.

Graduate

program																		NaN

colenroct12				1.	Not	enrolled		4.

Graduate

program																		NaN

colenrfeb13	4.	Graduate	program	4.

Graduate

program																		NaN
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colenroct13				1.	Not	enrolled		4.

Graduate

program																		NaN

colenrfeb14	4.	Graduate	program	4.

Graduate

program																		NaN

6.	 Show	individuals	with	bachelor's	degrees	or	more,	but	no	4-year	college
enrollment.

Use	isin	to	compare	the	first	character	in	highestdegree	with
all	of	the	values	in	a	list

(nls97.highestdegree.str[0:1].isin(['4','5','6','7'])

>>>

nls97.highestdegree.value_counts(sort=False)

0.	None													953

1.	GED													1146

2.	High	School					3667

3.	Associates							737

4.	Bachelors							1673

5.	Masters										603

6.	PhD															54

7.	Professional					120

Name:	highestdegree,	dtype:	int64

>>>	no4yearenrollment	=

nls97.loc[nls97.highestdegree.str[0:1].\
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...			isin(['4','5','6','7'])	&

~nls97.filter(like="colenr").\

...			apply(lambda	x:

x.str[0:1]=='3').\

...			any(axis=1),

"colenrfeb97":"colenroct17"]

>>>	len(no4yearenrollment)

39

>>>	no4yearenrollment.head(3).T

personid																	113486														118749														124616

colenroct01		2.	2-year

college						1.	Not

enrolled					1.	Not	enrolled

colenrfeb02		2.	2-year

college						1.	Not

enrolled		2.	2-year	college

colenroct02		2.	2-year

college						1.	Not

enrolled		2.	2-year	college

colenrfeb03		2.	2-year

college						1.	Not

enrolled		2.	2-year	college

colenroct03		2.	2-year

college						1.	Not

enrolled		2.	2-year	college

Telegram Channel @nettrain



colenrfeb04		2.	2-year

college						1.	Not

enrolled		2.	2-year	college

colenroct04					1.	Not

enrolled					1.	Not

enrolled		2.	2-year	college

colenrfeb05					1.	Not

enrolled					1.	Not

enrolled		2.	2-year	college

colenroct05					1.	Not

enrolled					1.	Not

enrolled					1.	Not	enrolled

colenrfeb06					1.	Not

enrolled					1.	Not

enrolled					1.	Not	enrolled

colenroct06					1.	Not

enrolled					1.	Not

enrolled					1.	Not	enrolled

colenrfeb07					1.	Not	enrolled		2.

2-year	college						1.	Not

enrolled

colenroct07					1.	Not	enrolled		2.

2-year	college						1.	Not

enrolled
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colenrfeb08					1.	Not

enrolled					1.	Not

enrolled					1.	Not	enrolled

...

7.	 Show	individuals	with	a	high	wage	income.

Define	high	wages	as	3	standard	deviations	above	the	mean.	It	looks	as	though
wage	income	values	have	been	truncated	at	$235,884:

>>>	highwages	=

nls97.loc[nls97.wageincome	>

nls97.wageincome.mean()+

(nls97.wageincome.std()*3),

['wageincome']]

>>>	highwages

										wageincome

personid												

131858							235,884

133619							235,884

151863							235,884

164058							235,884

164897							235,884

...														...

964406							235,884

966024							235,884

Telegram Channel @nettrain



976141							235,884

983819							235,884

989896							235,884

[121	rows	x	1	columns]

8.	 Show	individuals	with	large	changes	in	weeks	worked	for	the	most	recent
year.

Calculate	the	average	value	for	weeks	worked	between	2012	and	2016	for

each	person	(nls97.loc[:,

"weeksworked12":"weeksworked16"].mean(axis=1)

We	indicate	axis=1	to	calculate	the	mean	across	columns	for	each
individual,	rather	than	over	individuals.	We	then	check	to	see	whether	the
mean	is	either	less	than	50%	of	the	weeks	worked	in	2017	value	or	more	than
twice	as	much.	We	also	indicate	that	we	are	not	interested	in	rows	that	satisfy

those	criteria	by	being	null	for	weeks	worked	in	2017.	There	are	1,160
individuals	with	sharp	changes	in	weeks	worked	in	2017:

>>>	workchanges	=

nls97.loc[~nls97.loc[:,

...			"weeksworked12":"weeksworked16"].mean(axis=1).\

...			between(nls97.weeksworked17*0.5,nls97.weeksworked17*2)

\

...			&

~nls97.weeksworked17.isnull(),

...			"weeksworked12":"weeksworked17"]

>>>	len(workchanges)
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1160

>>>	workchanges.head(7).T

personid							100284		101526		101718		101724		102228		102454		102625

weeksworked12							0							0						52						52						52						52						14

weeksworked13					nan							0							9						52						52						52							3

weeksworked14						11							0							0						52						17							7						52

weeksworked15						52							0						32						17							0							0						44

weeksworked16						47							0							0							0							0							0							0

weeksworked17							0						45							0						17							0							0							0

9.	 Show	inconsistencies	in	the	highest	grade	completed	and	the	highest	degree.

Use	the	crosstab	function	to	show

highestgradecompleted	by	highestdegree	for

people	with	highestgradecompleted	less	than	12.	A
good	number	of	these	individuals	indicate	that	they	have	completed	high
school,	which	is	unusual	in	the	United	States	if	the	highest	grade	completed	is
less	than	12:

>>>	ltgrade12	=

nls97.loc[nls97.highestgradecompleted<12,

['highestgradecompleted','highestdegree']]

>>>

pd.crosstab(ltgrade12.highestgradecompleted,

ltgrade12.highestdegree)

highestdegree										0.	None		1.

GED		2.	High	School

Telegram Channel @nettrain



highestgradecompleted																																	

5																												0							0															1

6																											11							5															0

7																											24							6															1

8																										113						78															7

9																										112					169															8

10																									111					204														13

11																									120					200														41

These	steps	reveal	a	number	of	logical	inconsistences	in	the	NLS	data.

How	it	works…
The	syntax	required	to	do	the	kind	of	subsetting	that	we	have	done	in	this	recipe
may	seem	a	little	complicated	if	you	are	seeing	it	for	the	first	time.	You	do	get
used	to	it,	however,	and	it	allows	for	quickly	running	any	query	against	the	data
that	you	might	imagine.

Some	of	the	inconsistencies	or	unexpected	values	suggest	either	respondent	or
entry	error,	so	warrant	further	investigation.	It	is	hard	to	explain	positive	values

for	wage	income	when	weeks	worked	is	0.	Other	unexpected	values	might	not
be	data	problems	at	all,	but	suggest	that	we	should	be	careful	about	how	we	use
that	data.	For	example,	we	might	not	want	to	use	the	weeks	worked	in	2017	by
itself.	Instead,	we	might	consider	using	three-year	averages	in	many	analyses.

See	also
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The	Selecting	and	organizing	columns	and	Selecting	rows	recipes	in	Chapter	3,
Taking	the	Measure	of	Your	Data,	demonstrate	some	of	the	techniques	for

subsetting	the	data	used	here.	We	examine	apply	functions	in	more	detail	in
Chapter	7,	Fixing	Messy	Data	when	Aggregating.

Using	 l inear 	 regression	 to
ident i fy 	data 	points 	with
signif icant 	 inf luence
The	remaining	recipes	in	this	chapter	use	statistical	modeling	to	identify	outliers.
The	advantage	of	these	techniques	is	that	they	are	less	dependent	on	the
distribution	of	the	variable	of	concern,	and	take	more	into	account	than	can	be
revealed	in	either	univariate	or	bivariate	analyses.	This	allows	us	to	identify
outliers	that	are	not	otherwise	apparent.	On	the	other	hand,	by	taking	more
factors	into	account,	multivariate	techniques	may	provide	evidence	that	a
previously	suspect	value	is	actually	within	an	expected	range,	and	provides
meaningful	information.

In	this	recipe,	we	use	linear	regression	to	identify	observations	(rows)	that	have
an	outsized	influence	on	models	of	a	target	or	dependent	variable.	This	can
indicate	that	one	or	more	values	for	a	few	observations	are	so	extreme	that	they
compromise	model	fit	for	all	of	the	other	observations.

Getting	ready
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The	code	in	this	recipe	requires	the	matplotlib	and

statsmodels	libraries.	You	can	install	Matplotlib	and	Statsmodels	by

entering	pip	install	matplotlib	and	pip

install	statsmodels	in	a	terminal	window	or

powershell	(in	Windows).

We	will	be	working	with	data	on	total	COVID-19	cases	and	deaths	per	country.

How	to	do	it…
We	will	use	the	statsmodels	OLS	method	to	fit	a	linear	regression	model	of
total	cases	per	million	of	the	population.	We	then	identify	those	countries	that
have	the	greatest	influence	on	that	model:

1.	 Import	pandas,	matplotlib,	and	statsmodels,	and
load	the	COVID	case	data:

>>>	import	pandas	as	pd

>>>	import	matplotlib.pyplot	as	plt

>>>	import	statsmodels.api	as	sm

>>>	covidtotals	=

pd.read_csv("data/covidtotals.csv")

>>>	covidtotals.set_index("iso_code",

inplace=True)

2.	 Create	an	analysis	file	and	generate	descriptive	statistics.

Get	just	the	columns	required	for	analysis.	Drop	any	row	with	missing	data	for
the	analysis	columns:
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>>>	xvars	=

['pop_density','median_age','gdp_per_capita']

>>>	covidanalysis	=

covidtotals.loc[:,

['total_cases_pm']	+

xvars].dropna()

>>>	covidanalysis.describe()

							total_cases_pm		pop_density		median_age		gdp_per_capita

count													175										175									175													175

mean												1,134										247										31										19,008

std													2,101										822											9										19,673

min																	0												2										15													661

25%																67											36										22											4,458

50%															263											82										30										12,952

75%													1,358										208										39										27,467

max												19,753								7,916										48									116,936

3.	 Fit	a	linear	regression	model.

There	are	good	conceptual	reasons	to	believe	that	population	density,	median
age,	and	GDP	per	capita	may	be	predictors	of	total	cases	per	million.	We	use
all	three	variables	in	our	model:

>>>	def	getlm(df):

...			Y	=	df.total_cases_pm
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...			X	=

df[['pop_density','median_age','gdp_per_capita']]

...			X	=	sm.add_constant(X)

...			return	sm.OLS(Y,	X).fit()

...

>>>	lm	=	getlm(covidanalysis)

>>>	lm.summary()

																coef				std

err							t						P>|t|					[0.025					0.975]

-------------------------------------

-------------------------------

----

const										944.47				426.71					2.21					0.028					102.17				1786.77

pop_density					-0.21						0.14				-1.45					0.150						-0.49						0.075

median_age					-49.44					16.01				-3.09					0.002					-81.05				-17.832

gdp_per_capita			0.09						0.01				12.02					0.000						0.077						0.107

4.	 Identify	those	countries	with	an	outsized	influence	on	the	model.

Cook's	distance	values	of	greater	than	0.5	should	be	scrutinized	closely:

>>>	influence	=

lm.get_influence().summary_frame()

>>>

influence.loc[influence.cooks_d>0.5,

['cooks_d']]
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										cooks_d

iso_code									

HKG										0.78

QAT										5.08

>>>

covidanalysis.loc[influence.cooks_d>0.5]

										total_cases_pm		pop_density		median_age		gdp_per_capita

iso_code																																																									

HKG																	0.00					7,039.71							44.80							56,054.92

QAT												19,753.15							227.32							31.90						116,935.60

5.	 Do	an	influence	plot.

Countries	with	higher	Cook's	Distance	values	have	larger	circles:

>>>	fig,	ax	=	plt.subplots(figsize=

(10,6))

>>>	sm.graphics.influence_plot(lm,	ax

=	ax,	criterion="cooks")

>>>	plt.show()

This	produces	the	following	plot:
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Figure	4.8	–	Influence	plot,	including	countries	with	the	highest	Cook's
Distance

6.	 Run	the	model	without	the	two	outliers.

Removing	these	outliers,	particularly	Qatar,	has	a	dramatic	effect	on	the

model.	The	estimates	for	median_age	and	for	the	constant	are	no
longer	significant:

>>>	covidanalysisminusoutliers	=

covidanalysis.loc[influence.cooks_d<0.5]

>>>	lm	=

getlm(covidanalysisminusoutliers)

>>>	lm.summary()

											coef				std

err										t						P>|t|						[0.025						0.975]

-------------------------------------

-------------------------------
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-----

const									44.09				349.92						0.13						0.900				-646.70					734.87

pop_density				0.24						0.15						1.67						0.098						-0.05							0.53

median_age				-2.52					13.53					-0.19						0.853					-29.22						24.18

gdp_per_capita

0.06						0.01						7.88						0.000							0.04							0.07

This	gives	us	a	sense	of	the	countries	that	are	most	unlike	the	others	in	terms	of
the	relationship	between	demographic	variables	and	total	cases	per	million	in
population.

How	it	works...
Cook's	Distance	is	a	measure	of	how	much	each	observation	influences	the
model.	The	large	impact	of	the	two	outliers	is	confirmed	in	step	6	when	we	rerun
the	model	without	them.	The	question	for	the	analyst	is	whether	outliers	such	as
these	add	important	information	or	distort	the	model	and	limit	its	applicability.
The	coefficient	of	-49	for	median	age	in	the	first	regression	results	indicates	that
every	one-year	increase	in	median	age	is	associated	with	a	49	point	reduction	in
cases	per	million	people.	But	this	seems	largely	due	to	the	model	trying	to	fit	a
quite	extreme	total	cases	per	million	value	for	Qatar.	Without	Qatar,	the
coefficient	on	age	is	no	longer	significant.

The	P>|t|	value	in	the	regression	output	tells	us	whether	the	coefficient	is

significantly	different	from	0.	In	the	first	regression,	the	coefficients	for

median_age	and	gdp_per_capita	are	significant	at	the

99%	level;	that	is,	the	P>|t|	value	is	less	than	0.01.	Only

Telegram Channel @nettrain



gdp_per_capita	is	significant	when	the	model	is	run	without	the
two	outliers.

There's	more…
We	run	a	linear	regression	model	in	this	recipe,	not	so	much	because	we	are
interested	in	the	parameter	estimates	of	the	model,	but	because	we	want	to
determine	whether	there	are	observations	with	potential	outsized	influence	on
any	multivariate	analysis	we	might	conduct.	That	definitely	seems	to	be	true	in
this	case.

Often,	it	makes	sense	to	remove	the	outliers,	as	we	have	done	here,	but	that	is
not	always	true.	When	we	have	independent	variables	that	do	a	good	job	of
capturing	what	makes	outliers	different,	then	the	parameter	estimates	for	the
other	independent	variables	are	less	vulnerable	to	distortion.	We	also	might
consider	transformations,	such	as	the	log	transformation	we	did	in	a	previous
recipe,	and	the	scaling	we	will	do	in	the	next	two	recipes.	An	appropriate
transformation,	given	your	data,	can	reduce	the	influence	of	outliers	by	limiting
the	size	of	residuals	at	the	extremes.

Using	k-nearest 	neighbor 	 to 	 f ind
out l iers
Unsupervised	machine	learning	tools	can	help	us	identify	observations	that	are
unlike	others	when	we	have	unlabeled	data;	that	is,	when	there	is	no	target	or
dependent	variable.	(In	the	previous	recipe,	we	used	total	cases	per	million	as	the
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dependent	variable.)	Even	when	selecting	targets	and	factors	is	relatively
straightforward,	it	might	be	helpful	to	identify	outliers	without	making	any
assumptions	about	relationships	between	variables.	We	can	use	k-nearest
neighbor	to	find	observations	that	are	most	unlike	others,	those	where	there	is
the	greatest	difference	between	their	values	and	their	nearest	neighbors'	values.

Getting	ready
You	will	need	PyOD	(Python	outlier	detection)	and	scikit-learn	to	run	the	code

in	this	recipe.	You	can	install	both	by	entering	pip	install	pyod

and	pip	install	sklearn	in	the	terminal	or

powershell	(in	Windows).

How	to	do	it…
We	will	use	k-nearest	neighbor	to	identify	countries	whose	attributes	indicate
that	they	are	most	anomalous:

1.	 Load	pandas,	pyod,	and	scikit-learn,	along	with	the
Covid	case	data:

>>>	import	pandas	as	pd

>>>	from	pyod.models.knn	import	KNN

>>>	from	sklearn.preprocessing	import

StandardScaler

>>>	covidtotals	=

pd.read_csv("data/covidtotals.csv")
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>>>	covidtotals.set_index("iso_code",

inplace=True)

2.	 Create	a	standardized	data	frame	of	the	analysis	columns:

>>>	standardizer	=	StandardScaler()

>>>	analysisvars	=

['location','total_cases_pm','total_deaths_pm',\

...			'pop_density','median_age','gdp_per_capita']

>>>	covidanalysis	=

covidtotals.loc[:,

analysisvars].dropna()

>>>	covidanalysisstand	=

standardizer.fit_transform(covidanalysis.iloc[:,

1:])

3.	 Run	the	KNN	model	and	generate	anomaly	scores.

We	create	an	arbitrary	number	of	outliers	by	setting	the	contamination

parameter	to	0.1:

>>>	clf_name	=	'KNN'

>>>	clf	=	KNN(contamination=0.1)

>>>	clf.fit(covidanalysisstand)

KNN(algorithm='auto',

contamination=0.1,

leaf_size=30,	method='largest',

		metric='minkowski',

metric_params=None,	n_jobs=1,
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n_neighbors=5,	p=2,

		radius=1.0)

>>>	y_pred	=	clf.labels_

>>>	y_scores	=	clf.decision_scores_

4.	 Show	the	predictions	from	the	model.

Create	a	data	frame	from	the	y_pred	and	y_scores	NumPy

arrays.	Set	the	index	to	the	covidanalysis	data	frame	index	so
that	we	can	easily	combine	it	with	that	data	frame	later.	Notice	that	the
decision	scores	for	outliers	are	all	higher	than	those	for	the	inliers	(outlier	=
0):

>>>	pred	=	pd.DataFrame(zip(y_pred,

y_scores),

...			columns=['outlier','scores'],

...			index=covidanalysis.index)

>>>

>>>	pred.sample(10,	random_state=1)

										outlier		scores

iso_code																	

LBY													0				0.37

NLD													1				1.56

BTN													0				0.19

HTI													0				0.43

EST													0				0.46
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LCA													0				0.43

PER													0				1.41

BRB													0				0.77

MDA													0				0.91

NAM													0				0.31

>>>	pred.outlier.value_counts()

0				157

1					18

Name:	outlier,	dtype:	int64

>>>	pred.groupby(['outlier'])

[['scores']].agg(['min','median','max'])

								scores												

											min	median		max

outlier																			

0									0.08			0.36	1.52

1									1.55			2.10	9.48

5.	 Show	the	COVID	data	for	the	outliers.

First,	merge	the	covidanalysis	and	pred	data	frames:

>>>

covidanalysis.join(pred).loc[pred.outlier==1,\

...			['location','total_cases_pm','total_deaths_pm','scores']].\

...			sort_values(['scores'],

ascending=False)
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																						location		total_cases_pm		total_deaths_pm		scores

iso_code																																																															

SGP																		Singapore								5,962.73													3.93				9.48

QAT																						Qatar							19,753.15												13.19				8.00

HKG																		Hong

Kong												0.00													0.00				7.77

BEL																				Belgium								5,037.35											816.85				3.54

BHR																				Bahrain								6,698.47												11.17				2.84

LUX																	Luxembourg								6,418.78											175.73				2.44

ESP																						Spain								5,120.95											580.20				2.18

KWT																					Kuwait								6,332.42												49.64				2.13

GBR													United

Kingdom								4,047.40											566.97				2.10

ITA																						Italy								3,853.99											552.66				2.09

IRL																				Ireland								5,060.96											334.56				2.07

BRN																					Brunei										322.30													4.57				1.92

USA														United

States								5,408.39											315.35				1.89

FRA																					France								2,324.88											441.25				1.86

MDV																			Maldives								3,280.04													9.25				1.82

ISL																				Iceland								5,292.31												29.30				1.58

NLD																Netherlands								2,710.38											347.60				1.56
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ARE							United	Arab

Emirates								3,493.99												26.69				1.55

These	steps	show	how	we	can	use	k-nearest	neighbor	to	identify	outliers	based
on	multivariate	relationships.

How	it	works...
PyOD	is	a	package	of	Python	outlier	detection	tools.	We	use	it	here	as	a	wrapper

around	scikit-learn's	KNN	package.	This	simplifies	some	tasks.

Our	focus	in	this	recipe	is	not	on	building	a	model,	but	on	getting	a	quick	sense
of	which	observations	(countries)	are	significant	outliers	once	we	take	all	the
data	we	have	into	account.	This	analysis	supports	our	developing	sense	that
Singapore,	Qatar,	and	Hong	Kong	are	very	different	observations	than	the	others
in	our	dataset.	They	have	very	high	decision	scores.	(The	table	in	step	5	is	sorted
in	descending	order	of	score.)

Countries	such	as	Belgium,	Bahrain,	and	Luxembourg	might	also	be	considered
outliers,	though	that	is	less	clear	cut.	The	previous	recipe	did	not	indicate	that
they	had	an	overwhelming	influence	on	a	regression	model.	But	that	model	did
not	take	both	cases	per	million	and	deaths	per	million	into	account	at	the	same
time.	That	could	also	explain	why	Singapore	is	even	more	of	an	outlier	than
Qatar	here.	It	has	both	high	cases	per	million	and	below-average	deaths	per
million.

Scikit-learn	makes	scaling	very	easy.	We	use	the	standard	scaler	in	step	2,	which
returns	the	z-score	for	each	value	in	the	data	frame.	The	z-score	subtracts	the
variable	mean	from	each	variable	value	and	divides	it	by	the	standard	deviation
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for	the	variable.	Many	machine	learning	tools	require	standardized	data	to	run
well.

There's	more...
K-nearest	neighbor	is	a	very	popular	machine	learning	algorithm.	It	is	easy	to
run	and	interpret.	Its	main	limitation	is	that	it	will	run	slowly	on	large	datasets.

We	have	skipped	steps	we	might	usually	take	when	building	machine	learning
models.	We	did	not	create	separate	training	and	test	datasets,	for	example.	PyOD
allows	this	to	be	done	easily,	but	this	is	not	necessary	for	our	purposes	here.

See	also
The	PyOD	toolkit	has	a	large	number	of	supervised	and	unsupervised	learning
techniques	for	detecting	anomalies	in	data.	You	can	get	the	documentation	for
this	at	https://pyod.readthedocs.io/en/latest/.

Using	Isolat ion	Forest 	 to 	 f ind
anomalies
Isolation	Forest	is	a	relatively	new	machine	learning	technique	for	identifying
anomalies.	It	has	quickly	become	popular,	partly	because	its	algorithm	is
optimized	to	find	anomalies,	rather	than	normal	values.	It	finds	outliers	by
successive	partitioning	of	the	data	until	a	data	point	has	been	isolated.	Points	that
require	fewer	partitions	to	be	isolated	receive	higher	anomaly	scores.	This
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process	turns	out	to	be	fairly	easy	on	system	resources.	In	this	recipe,	we
demonstrate	how	to	use	it	to	detect	outlier	COVID-19	cases	and	deaths.

Getting	ready
You	will	need	scikit-learn	and	Matplotlib	to	run	the	code	in	this	recipe.	You	can

install	them	by	entering	pip	install	sklearn	and	pip

install	matplotlib	in	the	terminal	or	powershell	(in
Windows).

How	to	do	it...
We	will	use	Isolation	Forest	to	find	the	countries	whose	attributes	indicate	that
they	are	most	anomalous:

1.	 Load	pandas,	matplotlib,	and	the

StandardScaler	and	IsolationForest	modules
from	scikit-learn:

>>>	import	pandas	as	pd

>>>	import	matplotlib.pyplot	as	plt

>>>	from	sklearn.preprocessing	import

StandardScaler

>>>	from	sklearn.ensemble	import

IsolationForest

>>>	from	mpl_toolkits.mplot3d	import

Axes3D
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>>>	covidtotals	=

pd.read_csv("data/covidtotals.csv")

>>>	covidtotals.set_index("iso_code",

inplace=True)

2.	 Create	a	standardized	analysis	data	frame.

First,	remove	all	rows	with	missing	data:

>>>	analysisvars	=

['location','total_cases_pm','total_deaths_pm',

...			'pop_density','median_age','gdp_per_capita']

>>>	standardizer	=	StandardScaler()

>>>	covidtotals.isnull().sum()

lastdate												0

location												0

total_cases									0

total_deaths								0

total_cases_pm						0

total_deaths_pm					0

population										0

pop_density								12

median_age									24

gdp_per_capita					28

hosp_beds										46

dtype:	int64
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>>>	covidanalysis	=

covidtotals.loc[:,

analysisvars].dropna()

>>>	covidanalysisstand	=

standardizer.fit_transform(covidanalysis.iloc[:,

1:])

3.	 Run	an	Isolation	Forest	model	to	detect	outliers.

Pass	the	standardized	data	to	the	fit	method.	18	countries	are	identified	as
outliers.	(These	countries	have	anomaly	values	of	-1.)	This	is	determined	by

the	contamination	number	of	0.1:

>>>

clf=IsolationForest(n_estimators=100,

max_samples='auto',

...			contamination=.1,

max_features=1.0)

>>>	clf.fit(covidanalysisstand)

IsolationForest(behaviour='deprecated',

bootstrap=False,

contamination=0.1,

																max_features=1.0,

max_samples='auto',

																n_estimators=100,

																n_jobs=None,

random_state=None,	verbose=0,

warm_start=False)
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>>>	covidanalysis['anomaly']	=

clf.predict(covidanalysisstand)

>>>	covidanalysis['scores']	=

clf.decision_function(covidanalysisstand)

>>>

covidanalysis.anomaly.value_counts()

1				157

-1					18

Name:	anomaly,	dtype:	int64

4.	 Create	outlier	and	inlier	data	frames.

List	the	top	10	outliers	according	to	anomaly	score:

>>>	inlier,	outlier	=

covidanalysis.loc[covidanalysis.anomaly==1],\

...			covidanalysis.loc[covidanalysis.anomaly==-1]

>>>

outlier[['location','total_cases_pm','total_deaths_pm',\

...			'median_age','gdp_per_capita','scores']].\

...			sort_values(['scores']).\

...			head(10)

													location		total_cases_pm		total_deaths_pm		median_age		\

iso_code																																																													

SGP									Singapore								5,962.73													3.93							42.40			

QAT													Qatar							19,753.15												13.19							31.90			
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HKG									Hong

Kong												0.00													0.00							44.80			

BEL											Belgium								5,037.35											816.85							41.80			

BHR											Bahrain								6,698.47												11.17							32.40			

LUX								Luxembourg								6,418.78											175.73							39.70			

ITA													Italy								3,853.99											552.66							47.90			

ESP													Spain								5,120.95											580.20							45.50			

NLD							Netherlands								2,710.38											347.60							43.20			

MDV										Maldives								3,280.04													9.25							30.60			

										gdp_per_capita		scores		

iso_code																										

SGP												85,535.38			-0.23		

QAT											116,935.60			-0.21		

HKG												56,054.92			-0.18		

BEL												42,658.58			-0.14		

BHR												43,290.71			-0.09		

LUX												94,277.96			-0.09		

ITA												35,220.08			-0.08		

ESP												34,272.36			-0.06		

NLD												48,472.54			-0.03		

MDV												15,183.62			-0.03

5.	 Plot	the	outliers	and	inliers:

>>>	ax	=	plt.axes(projection='3d')
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>>>	ax.set_title('Isolation	Forest

Anomaly	Detection')

>>>	ax.set_zlabel("Cases	Per

Million")

>>>	ax.set_xlabel("GDP	Per	Capita")

>>>	ax.set_ylabel("Median	Age")

>>>

ax.scatter3D(inlier.gdp_per_capita,

inlier.median_age,

inlier.total_cases_pm,

label="inliers",	c="blue")

>>>

ax.scatter3D(outlier.gdp_per_capita,

outlier.median_age,

outlier.total_cases_pm,

label="outliers",	c="red")

>>>	ax.legend()

>>>	plt.tight_layout()

>>>	plt.show()

This	produces	the	following	plot:
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Figure	4.9	–	Inlier	and	outlier	countries	by	GDP,	median	age,	and	cases	per
million

The	preceding	steps	demonstrate	the	use	of	Isolation	Forest	as	an	alternative	to
k-nearest	neighbor	for	anomaly	detection.

How	it	works…
We	use	Isolation	Forest	in	this	recipe	much	like	we	used	k-nearest	neighbor	in
the	previous	recipe.	In	step	3,	we	pass	a	standardized	dataset	to	the	Isolation

Forest	fit	method,	and	then	use	its	predict	and

decision_function	methods	to	get	the	anomaly	flag	and	score,
respectively.	We	use	the	anomaly	flag	in	step	4	to	separate	the	data	into	inliers
and	outliers.
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We	plot	the	inliers	and	outliers	in	step	5.	Since	there	are	only	three	dimensions	in
the	plot,	it	does	not	quite	capture	all	of	the	features	in	our	Isolation	Forest	model,
but	the	outliers	(the	red	dots)	clearly	have	higher	GDP	per	capita	and	median
age;	these	are	typically	to	the	right	of,	and	behind,	the	inliers.

The	results	from	Isolation	Forest	are	quite	similar	to	the	k-nearest	neighbor
results.	Qatar,	Singapore,	and	Hong	Kong	have	the	highest	(most	negative)
anomaly	scores.	Belgium	is	not	far	behind,	just	as	with	the	KNN	model.	This	is
most	likely	due	to	an	exceptionally	high	total	of	deaths	per	million	for	Belgium,
the	highest	in	the	dataset.	We	should	consider	removing	these	four	observations
from	any	multivariate	analyses	we	conduct.

There's	more…
Isolation	Forest	is	a	good	alternative	to	k-nearest	neighbor,	particularly	when
working	with	large	datasets.	The	efficiency	of	its	algorithm	allows	it	to	handle
large	samples	and	a	high	number	of	features	(variables).

The	anomaly	detection	techniques	we	have	used	in	the	last	three	recipes	were
designed	to	improve	multivariate	analyses	and	the	training	of	machine	learning
models.	However,	we	might	want	to	exclude	the	outliers	they	help	us	identify
much	earlier	in	the	analysis	process.	For	example,	if	it	makes	sense	to	exclude
Qatar	from	our	modeling,	it	might	also	make	sense	to	exclude	Qatar	from	some
descriptive	statistics.

See	also
In	addition	to	being	useful	for	anomaly	detection,	the	Isolation	Forest	algorithm
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is	quite	satisfying	intuitively.	(I	think	the	same	could	be	said	about	k-nearest
neighbor.)	You	can	read	more	about	Isolation	Forest	here:
https://cs.nju.edu.cn/zhouzh/zhouzh.files/publication/icdm08b.pdf.
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Chapter 	5: 	Using	Visual izat ions
for 	 the	Ident i f icat ion	of
Unexpected	Values
We	dipped	our	toes	in	the	water	with	visualizations	in	several	recipes	in	the
previous	chapter.	We	used	histograms	and	QQ	plots	to	examine	the	distribution
of	a	single	variable,	and	scatter	plots	to	view	how	two	variables	are	related.	But
we	were	just	scratching	the	surface	of	the	rich	visualization	tools	available	in	the
Matplotlib	and	Seaborn	libraries.	Getting	comfortable	with	these	tools,	and	their
seemingly	inexhaustible	capabilities,	can	help	us	uncover	patterns	and	oddities
that	are	not	obvious	when	we	run	the	standard	battery	of	descriptives.

Boxplots,	for	example,	are	a	great	tool	for	visualizing	values	outside	of	a	certain
range.	These	can	be	extended	with	grouped	boxplots	or	violin	plots	that	allow	us
to	compare	distributions	across	subsets	of	data.	We	can	also	do	much	more	with
scatter	plots	than	we	did	in	the	last	chapter,	including	getting	some	sense	of
multivariate	relationships.	Histograms,	too,	can	sometimes	offer	additional
insight	if	we	display	several	histograms	on	one	plot	or	create	a	stacked
histogram.	We	explore	all	of	these	capabilities	in	this	chapter.

Specifically,	the	recipes	in	this	chapter	demonstrate	the	following	topics:

Using	histograms	to	examine	the	distribution	of	continuous	variables

Using	boxplots	to	identify	outliers	for	continuous	variables

Using	grouped	boxplots	to	uncover	unexpected	values	in	a	particular	group
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Examining	both	the	distribution	shape	and	outliers	with	violin	plots

Using	scatter	plots	to	view	bivariate	relationships

Using	line	plots	to	examine	trends	in	continuous	variables

Generating	a	heat	map	based	on	a	correlation	matrix

Technical 	 requirements
The	code	and	notebooks	for	this	chapter	are	available	on	GitHub	at
https://github.com/PacktPublishing/Python-Data-Cleaning-Cookbook

Using	his tograms	 to 	examine
the	dis t r ibut ion	of 	cont inuous
variables
The	go-to	visualization	tool	for	statisticians	trying	to	understand	how	single
variables	are	distributed	is	the	histogram.	Histograms	plot	a	continuous	variable
on	the	x	axis,	in	bins	determined	by	the	researcher,	and	the	frequency	of
occurrence	on	the	y	axis.

Histograms	provide	a	clear	and	meaningful	illustration	of	the	shape	of	a
distribution,	including	central	tendency,	skewness	(symmetry),	excess	kurtosis
(relatively	fat	tails),	and	spread.	This	matters	for	statistical	testing,	as	many	tests
make	assumptions	about	a	variable's	distribution.	Moreover,	our	expectation	of
what	data	values	to	expect	should	be	guided	by	our	understanding	of	the
distribution's	shape.	For	example,	a	value	at	the	90th	percentile	has	very
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different	implications	when	it	comes	from	a	normal	distribution	rather	than	from
a	uniform	distribution.

One	of	the	first	tasks	I	ask	introductory	statistics	students	to	do	is	construct	a
histogram	manually	from	a	small	sample.	We	do	boxplots	in	the	following	class.
Together,	histograms	and	boxplots	provide	a	solid	foundation	for	subsequent
analysis.	In	my	data	science	work,	I	try	to	remember	to	construct	histograms	and
boxplots	on	all	continuous	variables	of	interest	shortly	after	the	initial	importing
and	cleaning	of	data.	We	create	histograms	in	this	recipe,	and	boxplots	in	the
following	two	recipes.

Getting	ready
We	will	use	the	Matplotlib	library	to	generate	histograms.	Some	tasks	can	be
done	quickly	and	straightforwardly	in	Matplotlib.	Histograms	are	one	of	those
tasks.	We	will	switch	between	Matplotlib	and	Seaborn	(which	is	built	on
Matplotlib)	in	this	chapter,	based	on	which	tool	gets	us	to	the	required	graphic
more	easily.

We	will	also	use	the	statsmodels	library.	You	can	install	Matplotlib	and

statsmodels	with	pip	using	pip	install	matplotlib	and

pip	install	statsmodels.

We	will	work	with	data	on	land	temperature	and	on	coronavirus	cases	in	this
recipe.	The	land	temperature	DataFrame	has	one	row	per	weather	station.	The
coronavirus	data	frame	has	one	row	per	country	and	reflects	totals	as	of	July	18,
2020.
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DATA	NOTE
The	land	temperature	DataFrame	has	the	average	temperature	reading	(in	°C)
in	2019	from	over	12,000	stations	across	the	world,	though	a	majority	of	the
stations	are	in	the	United	States.	The	raw	data	was	retrieved	from	the	Global
Historical	Climatology	Network	integrated	database.	It	is	made	available	for
public	use	by	the	United	States	National	Oceanic	and	Atmospheric
Administration	at	https://www.ncdc.noaa.gov/data-access/land-based-station-
data/land-based-datasets/global-historical-climatology-network-monthly-
version-4.

Our	World	in	Data	provides	Covid-19	public	use	data	at
https://ourworldindata.org/coronavirus-source-data.	The	data	used	in	this	recipe
was	downloaded	on	June	1,	2020.	Some	of	the	data	was	missing	for	Hong	Kong
as	of	this	date,	but	this	problem	was	fixed	in	files	after	that.

How	to	do	it…
We	take	a	close	look	at	the	distribution	of	land	temperatures	by	weather	station
in	2019	and	total	coronavirus	cases	per	million	of	the	population	for	each
country.	We	start	with	a	few	descriptive	statistics	before	doing	a	QQ	plot,
histograms,	and	stacked	histograms.

1.	 Import	the	pandas,	matplotlib,	and	statsmodels
libraries.

Also,	load	the	data	on	land	temperatures	and	COVID	cases:

>>>	import	pandas	as	pd
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>>>	import	matplotlib.pyplot	as	plt

>>>	import	statsmodels.api	as	sm

>>>	landtemps	=

pd.read_csv("data/landtemps2019avgs.csv")

>>>	covidtotals	=

pd.read_csv("data/covidtotals.csv",

parse_dates=["lastdate"])

>>>	covidtotals.set_index("iso_code",

inplace=True)

2.	 Show	some	of	the	station	temperature	rows.

The	latabs	column	is	the	value	of	latitude	without	the	North	or	South
indicators;	so,	Cairo,	Egypt	at	approximately	30	degrees	north,	and	Porto
Alegre,	Brazil	at	about	30	degrees	south	have	the	same	value:

>>>

landtemps[['station','country','latabs','elevation','avgtemp']].\

...			sample(10,	random_state=1)

																				station								country		latabs		elevation		avgtemp

10526									NEW_FORK_LAKE		United

States						43						2,542								2

1416														NEIR_AGDM									Canada						51						1,145								2

2230																	CURICO										Chile						35								225							16

6002					LIFTON_PUMPING_STN		United

States						42						1,809								4

2106																HUAILAI										China						40								538							11
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2090													MUDANJIANG										China						45								242								6

7781			CHEYENNE_6SW_MESONET		United

States						36								694							15

10502											SHARKSTOOTH		United

States						38						3,268								4

11049												CHALLIS_AP		United

States						45						1,534								7

2820																METHONI									Greece						37									52							18

3.	 Show	some	descriptive	statistics.

Also,	look	at	the	skew	and	the	kurtosis:

>>>	landtemps.describe()

							latabs		elevation		avgtemp

count		12,095					12,095			12,095

mean							40								589							11

std								13								762								9

min									0							-350						-61

25%								35									78								5

50%								41								271							10

75%								47								818							17

max								90						9,999							34

>>>	landtemps.avgtemp.skew()

-0.2678382583481769

>>>	landtemps.avgtemp.kurtosis()
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2.1698313707061074

4.	 Do	a	histogram	of	average	temperatures.

Also,	draw	a	line	at	the	overall	mean:

>>>	plt.hist(landtemps.avgtemp)

>>>

plt.axvline(landtemps.avgtemp.mean(),

color='red',

linestyle='dashed',

linewidth=1)

>>>	plt.title("Histogram	of	Average

Temperatures	(Celsius)")

>>>	plt.xlabel("Average	Temperature")

>>>	plt.ylabel("Frequency")

>>>	plt.show()

This	results	in	the	following	histogram:
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Figure	5.1	–	Histogram	of	average	temperatures	across	weather	stations	in
2019

5.	 Run	a	QQ	plot	to	examine	where	the	distribution	deviates	from	a	normal
distribution.

Notice	that	much	of	the	distribution	of	temperatures	falls	along	the	red	line
(all	dots	would	fall	on	the	red	line	if	the	distribution	were	perfectly	normal,
but	the	tails	fall	off	dramatically	from	the	normal):

>>>

sm.qqplot(landtemps[['avgtemp']].sort_values(['avgtemp']),

line='s')

>>>	plt.title("QQ	Plot	of	Average

Temperatures")

>>>	plt.show()

Telegram Channel @nettrain



This	results	in	the	following	QQ	plot:

Figure	5.2	–	Plot	of	average	temperature	by	station	compared	with	the	normal
distribution

6.	 Show	the	skewness	and	kurtosis	for	total	Covid	cases	per	million.

This	is	from	the	COVID-19	data	frame,	which	has	one	row	for	each	country:

>>>	covidtotals.total_cases_pm.skew()

4.284484653881833

>>>

covidtotals.total_cases_pm.kurtosis()

26.137524276840452
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7.	 Do	a	stacked	histogram	of	the	Covid	case	data.

Select	data	from	four	of	the	regions.	(Stacked	histograms	can	get	messy	with

any	more	categories	than	that.)	Define	a	getcases	function	that	returns

a	series	for	total_cases_pm	for	the	countries	of	a	region.	Pass

those	series	to	the	hist	method	([getcases(k)	for	k

in	showregions])	to	create	the	stacked	histogram.	Notice	that
much	of	the	distribution—almost	40	countries	out	of	the	65	countries	in	these
regions—has	cases	per	million	below	2,000:

>>>	showregions	=	['Oceania	/

Aus','East	Asia','Southern

Africa',	'Western	Europe']

>>>

>>>	def	getcases(regiondesc):

...			return

covidtotals.loc[covidtotals.region==regiondesc,

...					'total_cases_pm']

...

>>>	plt.hist([getcases(k)	for	k	in

showregions],\

...			color=

['blue','mediumslateblue','plum','mediumvioletred'],\

...			label=showregions,\

...			stacked=True)

>>>
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>>>	plt.title("Stacked	Histogram	of

Cases	Per	Million	for	Selected

Regions")

>>>	plt.xlabel("Cases	Per	Million")

>>>	plt.ylabel("Frequency")

>>>	plt.xticks(np.arange(0,	22500,

step=2500))

>>>	plt.legend()

>>>	plt.show()

This	results	in	the	following	stacked	histogram:
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Figure	5.3	–	Stacked	histogram	of	number	of	countries	per	region	at	different
cases	per	million	levels

8.	 Show	multiple	histograms	on	one	figure.

This	allows	different	x	and	y	axis	values.	We	need	to	loop	through	each	axis

and	select	a	different	region	from	showregions	for	each	subplot:

>>>	fig,	axes	=	plt.subplots(2,	2)

>>>	fig.subtitle("Histograms	of	Covid

Cases	Per	Million	by	Selected

Regions")

>>>	axes	=	axes.ravel()

>>>	for	j,	ax	in	enumerate(axes):

...			ax.hist(covidtotals.loc[covidtotals.region==showregions[j]].\

...					total_cases_pm,	bins=5)

...			ax.set_title(showregions[j],

fontsize=10)

...			for	tick	in

ax.get_xticklabels():

...					tick.set_rotation(45)

...

>>>	plt.tight_layout()

>>>	fig.subplots_adjust(top=0.88)

>>>	plt.show()

This	results	in	the	following	histograms:
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Figure	5.4	–	Histograms	by	region	with	numbers	of	countries	at	different	cases
per	million	levels

The	preceding	steps	demonstrated	how	to	visualize	the	distribution	of	a
continuous	variable	using	histograms	and	QQ	plots.

How	it	works…
Step	4	shows	how	easy	it	is	to	display	a	histogram.	This	can	be	done	by	passing

a	series	to	the	hist	method	of	Matplotlib's	pyplot	module.	(We	use	an

alias	of	plt	for	matplotlib.)	We	could	have	also	passed	any	ndarray,	or
even	a	list	of	data	series.
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We	also	get	great	access	to	the	attributes	of	the	figure	and	its	axes.	We	can	set
the	labels	for	each	axis,	as	well	as	the	tick	marks	and	tick	labels.	We	can	also
specify	the	content	and	look	and	feel	of	the	legend.	We	will	be	taking	advantage
of	this	functionality	often	in	this	chapter.

We	pass	multiple	series	to	the	hist	method	in	Step	7	to	produce	the	stacked

histogram.	Each	series	is	the	total_cases_pm	(cases	per	million	of
population)	value	for	the	countries	in	a	region.	To	get	the	series	for	each	region,

we	call	the	getcases	function	for	each	item	in	showregions.
We	choose	colors	for	each	series	rather	than	allowing	that	to	happen

automatically.	We	also	use	the	showregions	list	to	select	labels	for	the
legend.

In	Step	8,	we	start	by	indicating	that	we	want	four	subplots,	in	two	rows	and	two

columns.	That	is	what	we	get	with	plt.subplots(2,	2),	which

returns	both	a	figure	and	the	four	axes.	We	loop	through	the	axes	with	for

j,	ax	in	enumerate(axes).	Within	each	loop,	we	select	a

different	region	for	the	histogram	from	showregions.	Within	each	axis,
we	loop	through	the	tick	labels	and	change	the	rotation.	We	also	adjust	the	start
of	the	subplots	to	make	enough	room	for	the	figure	title.	Note	that	we	need	to

use	suptitle	to	add	a	title	in	this	case.	Using	title	would	add	the
title	to	a	subplot.

There's	more...
The	land	temperature	data	is	not	quite	normally	distributed,	as	the	histograms
and	the	skew	and	kurtosis	measures	show.	It	is	skewed	to	the	left	(skew	of
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-0.26)	and	actually	has	somewhat	skinnier	tails	than	normal	(kurtosis	of
2.17,	compared	with	3).	Although	there	are	some	extreme	values,	there	are	not
that	many	of	them	relative	to	the	overall	size	of	the	dataset.	While	it	is	not
perfectly	bell-shaped,	the	land	temperature	data	frame	is	a	fair	bit	easier	to	deal
with	than	the	Covid	case	data.

The	skew	and	kurtosis	of	the	Covid	cases	per	million	variable
show	that	it	is	some	distance	from	normal.	The	skew	of	4	and	kurtosis	of	26
indicates	a	high	positive	skew	and	much	fatter	tails	than	with	a	normal
distribution.	This	is	also	reflected	in	the	histograms,	even	when	we	look	at	the
numbers	by	region.	There	are	a	number	of	countries	at	very	low	levels	of	cases
per	million	in	most	regions,	and	just	a	few	countries	with	high	levels	of	cases.
The	Using	grouped	boxplots	to	uncover	unexpected	values	in	a	particular	group
recipe	in	this	chapter	shows	that	there	are	outliers	in	almost	every	region.

If	you	work	through	all	of	the	recipes	in	this	chapter,	and	you	are	relatively	new
to	Matplotlib	and	Seaborn,	you	will	find	those	libraries	either	usefully	flexible	or
confusingly	flexible.	It	is	difficult	to	even	pick	one	strategy	and	stick	with	it
because	you	might	need	to	set	up	your	figure	and	axes	in	a	particular	way	to	get
the	visualization	you	want.	It	is	helpful	to	keep	two	things	in	mind	when
working	through	these	recipes:	first,	you	will	generally	need	to	create	a	figure
and	one	or	more	subplots;	and	second,	the	main	plotting	functions	work

similarly	regardless,	so	plt.hist	and	ax.hist	will	both	often
work.

Using	boxplots 	 to 	 ident i fy
out l iers 	 for 	cont inuous	var iables
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Boxplots	are	essentially	a	graphical	representation	of	our	work	in	the	Identifying
outliers	with	one	variable	recipe	in	Chapter	4,	Identifying	Missing	Values	and
Outliers	in	Subsets	of	Data.	There,	we	used	the	concept	of	interquartile	range
(IQR)—the	distance	between	the	value	at	the	first	quartile	and	the	value	at	the

third	quartile—to	determine	outliers.	Any	value	greater	than	(1.5	*

IQR)	+	the	third	quartile	value,	or	less	than	the	first	quartile	value	–	(1.5

*	IQR),	was	considered	an	outlier.	That	is	precisely	what	is	revealed	in	a
boxplot.

Getting	ready
We	will	work	with	cumulative	data	on	coronavirus	cases	and	deaths	by	country,
and	the	National	Longitudinal	Surveys	(NLS)	data.	You	will	need	the
Matplotlib	library	to	run	the	code	on	your	computer.

How	to	do	it…
We	use	boxplots	to	show	the	shape	and	spread	of	Scholastic	Assessment	Test
(SAT)	scores,	weeks	worked,	and	Covid	cases	and	deaths:

1.	 Load	the	pandas	and	matplotlib	libraries.

Also,	load	the	NLS	and	Covid	data:

>>>	import	pandas	as	pd

>>>	import	matplotlib.pyplot	as	plt

>>>	nls97	=

pd.read_csv("data/nls97.csv")
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>>>	nls97.set_index("personid",

inplace=True)

>>>	covidtotals	=

pd.read_csv("data/covidtotals.csv",

parse_dates=["lastdate"])

>>>	covidtotals.set_index("iso_code",

inplace=True)

2.	 Do	a	boxplot	of	SAT	verbal	scores.

Produce	some	descriptives	first.	The	boxplot	method	produces	a
rectangle	that	represents	the	IQR,	the	values	between	the	first	and	third
quartile.	The	whiskers	go	from	that	rectangle	to	1.5	times	the	IQR.	Any	values
above	or	below	the	whiskers	(what	we	have	labeled	the	outlier	threshold)	are

considered	outliers	(we	use	annotate	to	point	to	the	first	and	third
quartile	points,	the	median,	and	to	the	outlier	thresholds):

>>>	nls97.satverbal.describe()

count			1,406

mean						500

std							112

min								14

25%							430

50%							500

75%							570

max							800

Name:	satverbal,	dtype:	float64
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>>>

plt.boxplot(nls97.satverbal.dropna(),

labels=['SAT	Verbal'])

>>>	plt.annotate('outlier	threshold',

xy=(1.05,780),	xytext=

(1.15,780),	size=7,

arrowprops=dict(facecolor='black',

headwidth=2,	width=0.5,

shrink=0.02))

>>>	plt.annotate('3rd	quartile',	xy=

(1.08,570),	xytext=(1.15,570),

size=7,

arrowprops=dict(facecolor='black',

headwidth=2,	width=0.5,

shrink=0.02))

>>>	plt.annotate('median',	xy=

(1.08,500),	xytext=(1.15,500),

size=7,

arrowprops=dict(facecolor='black',

headwidth=2,	width=0.5,

shrink=0.02))

>>>	plt.annotate('1st	quartile',	xy=

(1.08,430),	xytext=(1.15,430),

size=7,

arrowprops=dict(facecolor='black',
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headwidth=2,	width=0.5,

shrink=0.02))

>>>	plt.annotate('outlier	threshold',

xy=(1.05,220),	xytext=

(1.15,220),	size=7,

arrowprops=dict(facecolor='black',

headwidth=2,	width=0.5,

shrink=0.02))

>>>	#plt.annotate('outlier

threshold',	xy=(1.95,15),

xytext=(1.55,15),	size=7,

arrowprops=dict(facecolor='black',

headwidth=2,	width=0.5,

shrink=0.02))

>>>	plt.show()

This	results	in	the	following	boxplot:
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Figure	5.5	–	Boxplot	of	SAT	verbal	scores	with	labels	for	quartile	range	and
outliers

3.	 Show	some	descriptives	on	weeks	worked:

>>>	weeksworked	=	nls97.loc[:,

['highestdegree','weeksworked16',

'weeksworked17']]

>>>

>>>	weeksworked.describe()

							weeksworked16		weeksworked17

count										7,068										6,670

mean														39													39

std															21													19
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min																0														0

25%															23													37

50%															53													49

75%															53													52

max															53													52

4.	 Do	boxplots	of	weeks	worked:

>>>

plt.boxplot([weeksworked.weeksworked16.dropna(),

...			weeksworked.weeksworked17.dropna()],

...			labels=['Weeks	Worked

2016','Weeks	Worked	2017'])

>>>	plt.title("Boxplots	of	Weeks

Worked")

>>>	plt.tight_layout()

>>>	plt.show()

This	results	in	the	following	boxplots:
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Figure	5.6	–	Boxplots	of	two	variables	side	by	side

5.	 Show	some	descriptives	for	the	Covid	data.

Create	a	list	of	labels	(totvarslabels)	for	columns	to	use	in	a
later	step:

>>>	totvars	=

['total_cases','total_deaths','total_cases_pm',

'total_deaths_pm']

>>>	totvarslabels	=

['cases','deaths','cases	per

million','deaths	per	million']
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>>>	covidtotalsonly	=

covidtotals[totvars]

>>>	covidtotalsonly.describe()

							total_cases		total_deaths		total_cases_pm		total_deaths_pm

count										209											209													209														209

mean								60,757									2,703											2,297															74

std								272,440								11,895											4,040														156

min														3													0															1																0

25%												342													9													203																3

50%										2,820												53													869															15

75%									25,611											386											2,785															58

max						3,247,684							134,814										35,795												1,238

6.	 Do	boxplots	of	cases	and	deaths	per	million:

>>>	fig,	ax	=	plt.subplots()

>>>	plt.title("Boxplots	of	Covid

Cases	and	Deaths	Per	Million")

>>>

ax.boxplot([covidtotalsonly.total_cases_pm,covidtotalsonly.total_deaths_pm],\

...			labels=['cases	per

million','deaths	per	million'])

>>>	plt.tight_layout()

>>>	plt.show()

This	results	in	the	following	boxplots:
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Figure	5.7	–	Boxplots	of	two	variables	side	by	side

7.	 Show	the	boxplots	as	separate	subplots	on	one	figure.

It	is	hard	to	view	multiple	boxplots	on	one	figure	when	the	variable	values	are
very	different,	as	is	true	for	Covid	cases	and	deaths.	Fortunately,

matplotlib	allows	us	to	create	multiple	subplots	on	each	figure,
each	of	which	can	use	different	x	and	y	axes:

>>>	fig,	axes	=	plt.subplots(2,	2)

>>>	fig.suptitle("Boxplots	of	Covid

Cases	and	Deaths")

>>>	axes	=	axes.ravel()

>>>	for	j,	ax	in	enumerate(axes):
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...			ax.boxplot(covidtotalsonly.iloc[:,

j],	labels=[totvarslabels[j]])

...

>>>	plt.tight_layout()

>>>	fig.subplots_adjust(top=0.94)

>>>	plt.show()

This	results	in	the	following	boxplots:

Figure	5.8	–	Boxplots	with	different	y	axes
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Boxplots	are	a	relatively	straightforward	but	exceedingly	useful	way	to	view
how	variables	are	distributed.	They	make	it	easy	to	visualize	spread,	central
tendency,	and	outliers,	all	in	one	graphic.

How	it	works...
It	is	fairly	easy	to	create	a	boxplot	with	matplotlib,	as	Step	2	shows.

Passing	a	series	to	pyplot	is	all	that	is	required	(we	use	the	plt	alias).

We	call	the	show	method	of	pyplot	to	show	the	figure.	This	step	also
demonstrates	how	to	use	annotations	to	add	text	and	symbols	to	your	figure.	We

show	multiple	boxplots	in	Step	4	by	passing	multiple	series	to	pyplot.

It	can	be	difficult	to	show	multiple	boxplots	in	a	single	figure	when	the	scales
are	very	different,	as	is	the	case	with	the	Covid	outcome	data	(cases,	deaths,
cases	per	million,	and	deaths	per	million).	Step	7	shows	one	way	to	deal	with
that.	We	can	create	several	subplots	on	one	plot.	We	start	by	indicating	that	we
want	four	subplots,	in	two	columns	and	two	rows.	That	is	what	we	get	with

plt.subplots(2,	2),	which	returns	both	a	figure	and	the	four

axes.	We	can	then	loop	through	the	axes,	calling	boxplot	on	each	one.
Nifty!

However,	it	is	still	hard	to	see	the	IQR	for	cases	and	deaths	because	of	some	of
the	extreme	values.	In	the	next	recipe,	we	remove	some	of	the	extreme	values	to
give	us	a	better	visualization	of	the	remaining	data.

There's	more...
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The	boxplot	of	SAT	verbal	scores	in	Step	2	suggests	a	relatively	normal
distribution.	The	median	is	close	to	the	center	of	the	IQR.	This	is	not	surprising
given	that	the	descriptives	we	ran	show	that	mean	and	median	have	the	same
value.	There	is,	however,	substantially	more	room	for	outliers	at	the	lower	end
than	at	the	upper	end.	(Indeed,	the	very	low	SAT	verbal	scores	seem	implausible
and	should	be	checked.)

The	boxplots	of	weeks	worked	in	2016	and	2017	in	Step	4	show	variables	that
are	distributed	much	differently	than	SAT	scores.	The	medians	are	near	the	top
of	the	IQR	and	are	much	greater	than	the	means.	This	suggests	a	negative	skew.
Also,	notice	that	there	are	no	whiskers	or	outliers	at	the	upper	end	of	the
distribution	as	the	median	value	is	at,	or	near,	the	maximum.

See	also
Some	of	these	boxplots	suggest	that	the	data	we	are	examining	is	not	normally
distributed.	The	Identifying	outliers	with	one	variable	recipe	in	Chapter	4,
Identifying	Missing	Values	and	Outliers	in	Subsets	of	Data,	covers	some	normal
distribution	tests.	It	also	shows	how	to	take	a	closer	look	at	the	values	outside	of
the	outlier	thresholds:	the	circles	in	the	boxplots.

Using	grouped	boxplots 	 to
uncover 	unexpected	values 	 in 	a
part icular 	group
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We	saw	in	the	previous	recipe	that	boxplots	are	a	great	tool	for	examining	the
distribution	of	continuous	variables.	They	can	also	be	useful	when	we	want	to
see	if	those	variables	are	distributed	differently	for	parts	of	our	dataset:	salaries
for	different	age	groups;	number	of	children	by	marital	status;	litter	size	for
different	mammal	species.	Grouped	boxplots	are	a	handy	and	intuitive	way	to
view	differences	in	variable	distribution	by	categories	in	our	data.

Getting	ready
We	will	work	with	the	NLS	and	the	Covid	case	data.	You	will	need	Matplotlib
and	Seaborn	installed	on	your	computer	to	run	the	code	in	this	recipe.

How	to	do	it...
We	generate	descriptive	statistics	of	weeks	worked	by	highest	degree	earned.	We
then	use	grouped	boxplots	to	visualize	the	spread	of	the	weeks	worked
distribution	by	degree,	and	of	Covid	cases	by	region:

1.	 Import	the	pandas,	matplotlib,	and	seaborn	libraries:

>>>	import	pandas	as	pd

>>>	import	matplotlib.pyplot	as	plt

>>>	import	seaborn	as	sns

>>>	nls97	=

pd.read_csv("data/nls97.csv")

>>>	nls97.set_index("personid",

inplace=True)
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>>>	covidtotals	=

pd.read_csv("data/covidtotals.csv",

parse_dates=["lastdate"])

>>>	covidtotals.set_index("iso_code",

inplace=True)

2.	 View	the	median,	and	first	and	third	quartile	values	for	weeks	worked	for	each
degree	attainment	level.

First,	define	a	function	that	returns	those	values	as	a	series,	then	use

apply	to	call	it	for	each	group:

>>>	def	gettots(x):

...			out	=	{}

...			out['min']	=	x.min()

...			out['qr1']	=	x.quantile(0.25)

...			out['med']	=	x.median()

...			out['qr3']	=	x.quantile(0.75)

...			out['max']	=	x.max()

...			out['count']	=	x.count()

...			return	pd.Series(out)

...

>>>	nls97.groupby(['highestdegree'])

['weeksworked17'].\

...			apply(gettots).unstack()

																	min		qr1		med		qr3		max		count
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highestdegree																																		

0.

None												0				0			40			52			52				510

1.

GED													0				8			47			52			52				848

2.	High

School					0			31			49			52			52		2,665

3.

Associates						0			42			49			52			52				593

4.

Bachelors							0			45			50			52			52		1,342

5.

Masters									0			46			50			52			52				538

6.

PhD													0			46			50			52			52					51

7.

Professional				0			47			50			52			52					97

3.	 Do	a	boxplot	of	weeks	worked	by	highest	degree	earned.

Use	Seaborn	for	these	boxplots.	First,	create	a	subplot	and	name	it	myplt.

This	makes	it	easier	to	access	subplot	attributes	later.	Use	the	order

parameter	of	boxplot	to	order	by	highest	degree	earned.	Notice	that
there	are	no	outliers	or	whiskers	at	the	lower	end	for	individuals	with	no
degree	ever	received.	This	is	because	the	IQR	for	those	individuals	covers	the
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whole	range	of	values;	that	is,	the	value	at	the	25th	percentile	is	0	and	the
value	at	the	75th	percentile	is	52:

>>>	myplt	=

sns.boxplot('highestdegree','weeksworked17',

data=nls97,

...			order=sorted(nls97.highestdegree.dropna().unique()))

>>>	myplt.set_title("Boxplots	of

Weeks	Worked	by	Highest

Degree")

>>>	myplt.set_xlabel('Highest	Degree

Attained')

>>>	myplt.set_ylabel('Weeks	Worked

2017')

>>>

myplt.set_xticklabels(myplt.get_xticklabels(),

rotation=60,

horizontalalignment='right')

>>>	plt.tight_layout()

>>>	plt.show()

This	results	in	the	following	boxplots:
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Figure	5.9	–	Boxplots	of	weeks	worked	with	IQR	and	outliers	by	highest
degree

4.	 View	the	minimum,	maximum,	median,	and	first	and	third	quartile	values	for
total	cases	per	million	by	region.

Use	the	gettots	function	defined	in	Step	2:

>>>	covidtotals.groupby(['region'])

['total_cases_pm'].\

...			apply(gettots).unstack()

																		min			qr1			med			qr3				max		count

region																																															
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Caribbean										95			252			339

1,726		4,435					22

Central	Africa					15				71			368

1,538		3,317					11

Central	America				93			925	1,448

2,191	10,274						7

Central	Asia						374			919	1,974

2,907	10,594						6

East

Africa									9				65			190			269		5,015					13

East

Asia											3				16				65			269		7,826					16

Eastern	Europe				347			883	1,190

2,317		6,854					22

North

Africa						105			202			421			427				793						5

North	America			2,290	2,567	2,844

6,328		9,812						3

Oceania	/

Aus							1				61			234			424		1,849						8

South	America					284			395	2,857

4,044	16,323					13

South	Asia								106			574			885

1,127	19,082						9
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Southern

Africa				36				86			118			263		4,454						9

West

Africa								26			114			203			780		2,862					17

West	Asia										23			273	2,191

5,777	35,795					16

Western	Europe				200	2,193	3,769

5,357	21,038					32

5.	 Do	boxplots	of	cases	per	million	by	region.

Flip	the	axes	since	there	are	a	large	number	of	regions.	Also,	do	a	swarm	plot
to	give	some	sense	of	the	number	of	countries	by	region.	The	swarm	plot
displays	a	dot	for	each	country	in	each	region.	Some	of	the	IQRs	are	hard	to
see	because	of	the	extreme	values:

>>>	sns.boxplot('total_cases_pm',

'region',	data=covidtotals)

>>>	sns.swarmplot(y="region",

x="total_cases_pm",

data=covidtotals,	size=2,

color=".3",	linewidth=0)

>>>	plt.title("Boxplots	of	Total

Cases	Per	Million	by	Region")

>>>	plt.xlabel("Cases	Per	Million")

>>>	plt.ylabel("Region")

>>>	plt.tight_layout()
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>>>	plt.show()

This	results	in	the	following	boxplots:

Figure	5.10	–	Boxplots	and	swarm	plots	of	cases	per	million	by	region,	with
IQR	and	outliers

6.	 Show	the	most	extreme	values	for	cases	per	million:

>>>

covidtotals.loc[covidtotals.total_cases_pm>=14000,\

...			['location','total_cases_pm']]

												location		total_cases_pm

iso_code																												
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BHR										Bahrain										19,082

CHL												Chile										16,323

QAT												Qatar										35,795

SMR							San	Marino										21,038

VAT										Vatican										14,833

7.	 Redo	the	boxplots	without	the	extreme	values:

>>>	sns.boxplot('total_cases_pm',

'region',

data=covidtotals.loc[covidtotals.total_cases_pm<14000])

>>>	sns.swarmplot(y="region",

x="total_cases_pm",

data=covidtotals.loc[covidtotals.total_cases_pm<14000],

size=3,	color=".3",

linewidth=0)

>>>	plt.title("Total	Cases	Without

Extreme	Values")

>>>	plt.xlabel("Cases	Per	Million")

>>>	plt.ylabel("Region")

>>>	plt.tight_layout()

>>>	plt.show()

This	results	in	the	following	boxplots:
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Figure	5.11	–	Boxplots	of	cases	per	million	by	region	without	the	extreme	values

These	grouped	boxplots	reveal	how	much	the	distribution	of	cases,	adjusted	by
population,	varies	by	region.

How	it	works...
We	use	Seaborn	for	the	figures	we	create	in	this	recipe.	We	could	have	also	used
Matplotlib.	Seaborn	is	actually	built	on	top	of	Matplotlib,	extending	it	in	some
areas,	and	making	some	things	easier.	It	sometimes	produces	more	aesthetically
pleasing	figures	with	the	default	settings	than	Matplotlib	does.
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It	is	a	good	idea	to	have	some	descriptives	in	front	of	us	before	creating	figures
with	multiple	boxplots.	In	Step	2,	we	get	the	first	and	third	quartile	values,	and
the	median,	for	each	degree	attainment	level.	We	do	this	by	first	creating	a

function	called	gettots,	which	returns	a	series	with	those	values.	We

apply	gettots	to	each	group	in	the	data	frame	with	the	following
statement:

nls97.groupby(['highestdegree'])

['weeksworked17'].apply(gettots).unstack()

The	groupby	method	creates	a	data	frame	with	grouping	information,

which	is	passed	to	the	apply	function.	gettots	then	calculates

summary	values	for	each	group.	unstack	reshapes	the	returned	rows,	from
multiple	rows	per	group	(one	for	each	summary	statistic)	to	one	row	per	group,
with	columns	for	each	summary	statistic.

In	Step	3,	we	generate	a	boxplot	for	each	degree	attainment	level.	We	do	not
normally	need	to	name	the	subplot	object	we	create	when	we	use	Seaborn's

boxplot	method.	We	do	so	in	this	step,	naming	it	myplt,	so	that	we
can	easily	change	attributes—such	as	tick	labels—later.	We	rotate	the	labels	on

the	x	axis	using	set_xticklabels	so	that	the	labels	do	not	run	into
each	other.

We	flip	the	axes	for	the	boxplots	in	Step	5	since	there	are	more	group	levels
(regions)	than	there	are	ticks	for	the	continuous	variable,	cases	per	million.	We

do	that	by	making	total_cases_pm	the	value	for	the	first	argument,
rather	than	the	second.	We	also	do	a	swarm	plot	to	give	some	sense	of	the
number	of	observations	(countries)	in	each	region.
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Extreme	values	can	sometimes	make	it	difficult	to	view	a	boxplot.	Boxplots
show	both	the	outliers	and	the	IQR,	but	the	IQR	rectangle	will	be	so	small	that	it
is	not	viewable	when	outliers	are	several	times	the	third	or	first	quartile	value.	In

Step	5,	we	remove	all	values	of	total_cases_pm	greater	than	or
equal	to	14,000.	This	improves	the	presentation	of	each	IQR.

There's	more…
The	boxplots	of	weeks	worked	by	educational	attainment	in	Step	3	reveal	high
variation	in	weeks	worked,	something	that	is	not	obvious	in	univariate	analysis.
The	lower	the	educational	attainment	level,	the	greater	the	spread	in	weeks
worked.	There	is	substantial	variability	in	weeks	worked	in	2017	for	individuals
with	less	than	a	high	school	degree,	and	very	little	variability	for	individuals
with	college	degrees.

This	is	quite	relevant,	of	course,	to	our	understanding	of	what	is	an	outlier	in
terms	of	weeks	worked.	For	example,	someone	with	a	college	degree	who
worked	20	weeks	is	an	outlier,	but	they	would	not	be	an	outlier	if	they	had	less
than	a	high	school	diploma.

The	Cases	Per	Million	boxplots	also	invite	us	to	think	more
flexibly	about	what	an	outlier	is.	For	example,	none	of	the	outliers	for	cases	per
million	in	East	Africa	would	have	been	identified	as	an	outlier	in	the	dataset	as	a
whole.	In	addition,	those	values	are	all	lower	than	the	third	quartile	value	for
North	America.	But	they	definitely	are	outliers	for	East	Africa.

One	of	the	first	things	I	notice	when	looking	at	a	boxplot	is	where	the	median	is
in	the	IQR.	When	the	median	is	not	at	all	close	to	the	center,	I	know	I	am	not
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dealing	with	a	normally	distributed	variable.	It	also	gives	me	a	good	sense	of	the
direction	of	the	skew.	If	it	is	near	the	bottom	of	the	IQR,	meaning	that	the
median	is	much	closer	to	the	first	quartile	than	the	third,	then	there	is	positive
skew.	Compare	the	boxplot	for	the	Caribbean	to	that	of	Western	Europe.	A	large
number	of	low	values	and	a	few	high	values	brings	the	median	close	to	the	first
quartile	value	for	the	Caribbean.

See	also
We	work	much	more	with	groupby	in	Chapter	7,	Fixing	Messy	Data	when

Aggregating.	We	work	more	with	stack	and	unstack	in	Chapter	9,
Tidying	and	Reshaping	Data.

Examining	both	 the	dis t r ibut ion
shape	and	out l iers 	with	viol in
plots
Violin	plots	combine	histograms	and	boxplots	in	one	plot.	They	show	the	IQR,
median,	and	whiskers,	as	well	as	the	frequency	of	observations	at	all	ranges	of
values.	It	is	hard	to	visualize	how	that	is	possible	without	seeing	an	actual	violin
plot.	We	generate	a	few	violin	plots	on	the	same	data	we	used	for	boxplots	in	the
previous	recipe,	to	make	it	easier	to	grasp	how	they	work.

Getting	ready
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We	will	work	with	the	NLS	and	the	Covid	case	data.	You	need	Matplotlib	and
Seaborn	installed	on	your	computer	to	run	the	code	in	this	recipe.

How	to	do	it…
We	do	violin	plots	to	view	both	the	spread	and	shape	of	the	distribution	on	the
same	graphic.	We	then	do	violin	plots	by	groups:

1.	 Load	pandas,	matplotlib,	and	seaborn,	and	the	Covid
case	and	NLS	data:

>>>	import	pandas	as	pd

>>>	import	numpy	as	np

>>>	import	matplotlib.pyplot	as	plt

>>>	import	seaborn	as	sns

>>>	nls97	=

pd.read_csv("data/nls97.csv")

>>>	nls97.set_index("personid",

inplace=True)

>>>	covidtotals	=

pd.read_csv("data/covidtotals.csv",

parse_dates=["lastdate"])

>>>	covidtotals.set_index("iso_code",

inplace=True)

2.	 Do	a	violin	plot	of	the	SAT	verbal	score:
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>>>	sns.violinplot(nls97.satverbal,

color="wheat",	orient="v")

>>>	plt.title("Violin	Plot	of	SAT

Verbal	Score")

>>>	plt.ylabel("SAT	Verbal")

>>>	plt.text(0.08,	780,	"outlier

threshold",

horizontalalignment='center',

size='x-small')

>>>	plt.text(0.065,

nls97.satverbal.quantile(0.75),

"3rd	quartile",

horizontalalignment='center',

size='x-small')

>>>	plt.text(0.05,

nls97.satverbal.median(),

"Median",

horizontalalignment='center',

size='x-small')

>>>	plt.text(0.065,

nls97.satverbal.quantile(0.25),

"1st	quartile",

horizontalalignment='center',

size='x-small')

>>>	plt.text(0.08,	210,	"outlier

threshold",
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horizontalalignment='center',

size='x-small')

>>>	plt.text(-0.4,	500,	"frequency",

horizontalalignment='center',

size='x-small')

>>>	plt.show()

This	results	in	the	following	violin	plot:

Figure	5.12	–	Violin	plot	of	SAT	verbal	score	with	labels	for	the	IQR	and
outlier	threshold

3.	 Get	some	descriptives	for	weeks	worked:

Telegram Channel @nettrain



>>>	nls97.loc[:,

['weeksworked16','weeksworked17']].describe()

							weeksworked16		weeksworked17

count										7,068										6,670

mean														39													39

std															21													19

min																0														0

25%															23													37

50%															53													49

75%															53													52

max															53													52

4.	 Show	weeks	worked	for	2016	and	2017.

Use	a	more	object-oriented	approach	to	make	it	easier	to	access	some	axes'

attributes.	Notice	that	the	weeksworked	distributions	are	bimodal,
with	bulges	near	the	top	and	the	bottom	of	the	distribution.	Also,	note	the	very
different	IQR	for	2016	and	2017:

>>>	myplt	=

sns.violinplot(data=nls97.loc[:,

['weeksworked16','weeksworked17']])

>>>	myplt.set_title("Violin	Plots	of

Weeks	Worked")

>>>	myplt.set_xticklabels(["Weeks

Worked	2016","Weeks	Worked

2017"])
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>>>	plt.show()

This	results	in	the	following	violin	plots:

Figure	5.13	–	Violin	plots	showing	the	spread	and	shape	of	the	distribution	for
two	variables	side	by	side

5.	 Do	a	violin	plot	of	wage	income	by	gender	and	marital	status.

First,	create	a	collapsed	marital	status	column.	Specify	gender	for	the	x	axis,

salary	for	the	y	axis,	and	a	new	collapsed	marital	status	column	for	hue.	The

hue	parameter	is	used	for	grouping,	which	will	be	added	to	any	grouping

already	used	for	the	x	axis.	We	also	indicate	scale="count"	to
generate	violin	plots	sized	according	to	the	number	of	observations	in	each
category:

Telegram Channel @nettrain



>>>	nls97["maritalstatuscollapsed"]	=

nls97.maritalstatus.\

...			replace(['Married','Never-

married','Divorced','Separated','Widowed'],\

...			['Married','Never	Married','Not

Married','Not	Married','Not

Married'])

>>>	sns.violinplot(nls97.gender,

nls97.wageincome,

hue=nls97.maritalstatuscollapsed,

scale="count")

>>>	plt.title("Violin	Plots	of	Wage

Income	by	Gender	and	Marital

Status")

>>>	plt.xlabel('Gender')

>>>	plt.ylabel('Wage	Income	2017')

>>>	plt.legend(title="",	loc="upper

center",	framealpha=0,

fontsize=8)

>>>	plt.tight_layout()

>>>	plt.show()

This	results	in	the	following	violin	plots:
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Figure	5.14	–	Violin	plots	showing	the	spread	and	shape	of	the	distribution	by
two	different	groups

6.	 Do	violin	plots	of	weeks	worked	by	highest	degree	attained:

>>>	myplt	=

sns.violinplot('highestdegree','weeksworked17',

data=nls97,	rotation=40)

>>>

myplt.set_xticklabels(myplt.get_xticklabels(),

rotation=60,

horizontalalignment='right')

>>>	myplt.set_title("Violin	Plots	of

Weeks	Worked	by	Highest

Telegram Channel @nettrain



Degree")

>>>	myplt.set_xlabel('Highest	Degree

Attained')

>>>	myplt.set_ylabel('Weeks	Worked

2017')

>>>	plt.tight_layout()

>>>	plt.show()

This	results	in	the	following	violin	plots:

Figure	5.15	–	Violin	plots	showing	the	spread	and	shape	of	the	distribution	by
group
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These	steps	show	just	how	much	violin	plots	can	tell	us	about	how	continuous
variables	in	our	data	frame	are	distributed,	and	how	that	might	vary	by	group.

How	it	works…
Similar	to	boxplots,	violin	plots	show	the	median,	first	and	third	quartiles,	and
the	whiskers.	They	also	show	the	relative	frequency	of	variable	values.	(When
the	violin	plot	is	displayed	vertically,	the	relative	frequency	is	the	width	at	a
given	point.)	The	violin	plot	produced	in	Step	2,	and	the	associated	annotations,
provide	a	good	illustration.	We	can	tell	from	the	violin	plot	that	the	distribution
of	SAT	verbal	scores	is	not	dramatically	different	from	the	normal,	other	than	the
extreme	values	at	the	lower	end.	The	greatest	bulge	(greatest	width)	is	at	the
median,	declining	fairly	symmetrically	from	there.	The	median	is	relatively
equidistant	from	the	first	and	third	quartiles.

We	can	create	a	violin	plot	in	Seaborn	by	passing	one	or	more	data	series	to	the

violinplot	method.	We	can	also	pass	a	whole	data	frame	of	one	or
more	columns.	We	do	that	in	Step	4	because	we	want	to	plot	more	than	one
continuous	variable.

We	sometimes	need	to	experiment	with	the	legend	a	bit	to	get	it	to	be	both
informative	and	unobtrusive.	In	Step	5,	we	used	the	following	command	to
remove	the	legend	title	(since	it	is	clear	from	the	values),	locate	it	in	the	best

place	in	the	figure,	and	make	the	box	transparent	(framealpha=0):

plt.legend(title="",	loc="upper

center",	framealpha=0,

fontsize=8)
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We	can	pass	data	series	to	violinplot	in	a	variety	of	ways.	If	you	do

not	indicate	an	axis	with	"x="	or	"y=",	or	grouping	with	"hue=",
Seaborn	will	figure	that	out	based	on	order.	For	example,	in	Step	5,	we	did	the
following:

sns.violinplot(nls97.gender,

nls97.wageincome,

hue=nls97.maritalstatuscollapsed,

scale="count")

We	would	have	got	the	same	results	if	we	had	done	the	following:

sns.violinplot(x=nls97.gender,

y=nls97.wageincome,

hue=nls97.maritalstatuscollapsed,

scale="count")

We	could	have	also	done	this	to	obtain	the	same	result:

sns.violinplot(y=nls97.wageincome,

x=nls97.gender,		hue=nls97.maritalstatuscollapsed,

scale="count")

Although	I	have	highlighted	this	flexibility	in	this	recipe,	these	techniques	for
sending	data	to	Matplotlib	and	Seaborn	apply	to	all	of	the	plotting	methods

discussed	in	this	chapter	(though	not	all	of	them	have	a	hue	parameter).

There's	more…
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Once	you	get	the	hang	of	violin	plots,	you	will	appreciate	the	enormous	amount
of	information	they	make	available	on	one	figure.	We	get	a	sense	of	the	shape	of
the	distribution,	its	central	tendency,	and	its	spread.	We	can	also	easily	show	that
information	for	different	subsets	of	our	data.

The	distribution	of	weeks	worked	in	2016	is	different	enough	from	weeks
worked	in	2017	to	give	the	careful	analyst	pause.	The	IQR	is	quite	different—30
for	2016	(23	to	53),	and	15	for	2017	(37	to	52).

An	unusual	fact	about	the	distribution	of	wage	income	is	revealed	when
examining	the	violin	plots	produced	in	Step	5.	There	is	a	bunching-up	of
incomes	at	the	top	of	the	distribution	for	married	males,	and	somewhat	for
married	females.	That	is	quite	unusual	for	a	wage	income	distribution.	As	it
turns	out,	it	looks	like	there	is	a	ceiling	on	wage	income	of	$235,884.	This	is
something	that	we	definitely	want	to	take	into	account	in	future	analyses	that
include	wage	income.

The	income	distributions	have	a	similar	shape	across	gender	and	marital	status,
with	bulges	slightly	below	the	median	and	extended	positive	tails.	The	IQRs
have	relatively	similar	lengths.	However,	the	distribution	for	married	males	is
noticeably	higher	(or	to	the	right,	depending	on	chosen	orientation)	than	that	for
the	other	groups.

The	violin	plots	of	weeks	worked	by	degree	attained	show	very	different
distributions	by	group,	as	we	also	discovered	in	the	boxplots	of	the	same	data	in
the	previous	recipe.	What	is	more	clear	here,	though,	is	the	bimodal	nature	of	the
distribution	at	lower	levels	of	education.	There	is	a	bunching	at	low	levels	of
weeks	worked	for	individuals	without	college	degrees.	Individuals	without	high
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school	diplomas	or	a	GED	(a	Graduate	Equivalency	Diploma)	were	nearly	as
likely	to	work	5	or	fewer	weeks	in	2017	as	they	were	to	work	50	or	more	weeks.

We	used	Seaborn	exclusively	to	produce	violin	plots	in	this	recipe.	Violin	plots
can	also	be	produced	with	Matplotlib.	However,	the	default	graphics	in
Matplotlib	for	violin	plots	look	very	different	from	those	for	Seaborn.

See	also
It	might	be	helpful	to	compare	the	violin	plots	in	this	recipe	to	the	histograms,
boxplots,	and	grouped	boxplots	in	the	previous	recipes	in	this	chapter.

Using	scat ter 	plots 	 to 	view
bivariate 	 re lat ionships
My	sense	is	that	there	are	few	plots	that	data	analysts	rely	more	on	than	scatter
plots,	with	the	possible	exception	of	histograms.	We	are	all	very	used	to	looking
at	relationships	that	can	be	illustrated	in	two	dimensions.	Scatter	plots	capture
important	real-world	phenomena	(the	relationship	between	variables)	and	are
quite	intuitive	for	most	people.	This	makes	them	a	valuable	addition	to	our
visualization	toolkit.

Getting	ready
You	will	need	Matplotlib	and	Seaborn	for	this	recipe.	We	will	be	working	with

the	landtemps	dataset,	which	provides	the	average	temperature	in	2019
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for	12,095	weather	stations	across	the	world.

How	to	do	it...
We	level	up	our	scatter	plot	skills	from	the	previous	chapter	and	visualize	more
complicated	relationships.	We	display	the	relationship	between	average
temperature,	latitude,	and	elevation	by	showing	multiple	scatter	plots	on	one
chart,	creating	3D	scatter	plots,	and	showing	multiple	regression	lines:

1.	 Load	pandas,	numpy,	matplotlib,	the	Axes3D	module,

and	seaborn:

>>>	import	pandas	as	pd

>>>	import	numpy	as	np

>>>	import	matplotlib.pyplot	as	plt

>>>	from	mpl_toolkits.mplot3d	import

Axes3D

>>>	import	seaborn	as	sns

>>>	landtemps	=

pd.read_csv("data/landtemps2019avgs.csv")

2.	 Run	a	scatter	plot	of	latitude	(latabs)	by	average	temperature:

>>>	plt.scatter(x="latabs",

y="avgtemp",	data=landtemps)

>>>	plt.xlabel("Latitude	(N	or	S)")

>>>	plt.ylabel("Average	Temperature

(Celsius)")
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>>>	plt.yticks(np.arange(-60,	40,

step=20))

>>>	plt.title("Latitude	and	Average

Temperature	in	2019")

>>>	plt.show()

This	results	in	the	following	scatter	plot:

Figure	5.16	–	Scatter	plot	of	latitude	by	average	temperature

3.	 Show	the	high	elevation	points	in	red.

Create	low	and	high	elevation	data	frames.	Notice	that	the	high	elevation
points	are	generally	lower	(that	is,	cooler)	on	the	figure	at	each	latitude:
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>>>	low,	high	=

landtemps.loc[landtemps.elevation<=1000],

landtemps.loc[landtemps.elevation>1000]

>>>	plt.scatter(x="latabs",

y="avgtemp",	c="blue",

data=low)

>>>	plt.scatter(x="latabs",

y="avgtemp",	c="red",

data=high)

>>>	plt.legend(('low	elevation',

'high	elevation'))

>>>	plt.xlabel("Latitude	(N	or	S)")

>>>	plt.ylabel("Average	Temperature

(Celsius)")

>>>	plt.title("Latitude	and	Average

Temperature	in	2019")

>>>	plt.show()

This	results	in	the	following	scatter	plot:
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Figure	5.17	–	Scatter	plot	of	latitude	by	average	temperature	and	elevation

4.	 View	a	three-dimensional	plot	of	temperature,	latitude,	and	elevation.

It	looks	like	there	is	a	somewhat	steeper	decline	in	temperature,	with	increases
in	latitude	for	high	elevation	stations:

>>>	fig	=	plt.figure()

>>>	plt.suptitle("Latitude,

Temperature,	and	Elevation	in

2019")

>>>	ax.set_title('Three	D')

>>>	ax	=	plt.axes(projection='3d')

>>>	ax.set_xlabel("Elevation")
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>>>	ax.set_ylabel("Latitude")

>>>	ax.set_zlabel("Avg	Temp")

>>>	ax.scatter3D(low.elevation,

low.latabs,	low.avgtemp,

label="low	elevation",

c="blue")

>>>	ax.scatter3D(high.elevation,

high.latabs,	high.avgtemp,

label="high	elevation",

c="red")

>>>	ax.legend()

>>>	plt.show()

This	results	in	the	following	scatter	plot:
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Figure	5.18	–	3D	scatter	plot	of	latitude	and	elevation	by	average	temperature

5.	 Show	a	regression	line	of	latitude	on	the	temperature	data.

Use	regplot	to	get	a	regression	line:

>>>	sns.regplot(x="latabs",

y="avgtemp",	color="blue",

data=landtemps)

>>>	plt.title("Latitude	and	Average

Temperature	in	2019")

>>>	plt.xlabel("Latitude	(N	or	S)")

>>>	plt.ylabel("Average	Temperature")
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>>>	plt.show()

This	results	in	the	following	scatter	plot:

Figure	5.19	–	Scatter	plot	of	latitude	by	average	temperature	with	regression
line

6.	 Show	separate	regression	lines	for	low	and	high	elevation	stations.

We	use	lmplot	this	time	instead	of	regplot.	The	two	methods
have	similar	functionality.	Unsurprisingly,	high	elevation	stations	appear	to
have	both	lower	intercepts	(where	the	line	crosses	the	y	axis)	and	steeper
negative	slopes:

>>>	landtemps['elevation_group']	=

np.where(landtemps.elevation<=1000,'low','high')
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>>>	sns.lmplot(x="latabs",

y="avgtemp",

hue="elevation_group",

palette=dict(low="blue",

high="red"),	legend_out=False,

data=landtemps)

>>>	plt.xlabel("Latitude	(N	or	S)")

>>>	plt.ylabel("Average	Temperature")

>>>	plt.legend(('low	elevation',

'high	elevation'),	loc='lower

left')

>>>	plt.yticks(np.arange(-60,	40,

step=20))

>>>	plt.title("Latitude	and	Average

Temperature	in	2019")

>>>	plt.tight_layout()

>>>	plt.show()

This	results	in	the	following	scatter	plot:
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Figure	5.20	–	Scatter	plot	of	latitude	by	temperature	with	separate	regression
lines	for	elevation

7.	 Show	some	stations	above	the	low	and	high	elevation	regression	lines:

>>>	high.loc[(high.latabs>38)	&

(high.avgtemp>=18),\

...			['station','country','latabs','elevation','avgtemp']]

												station								country		latabs		elevation		avgtemp

3985							LAJES_AB							Portugal						39						1,016							18

5870		WILD_HORSE_6N		United

States						39						1,439							23
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>>>	low.loc[(low.latabs>47)	&

(low.avgtemp>=14),

...			['station','country','latabs','elevation','avgtemp']]

																	station								country		latabs		elevation		avgtemp

1062						SAANICHTON_CDA									Canada						49									61							18

1160					CLOVERDALE_EAST									Canada						49									50							15

6917		WINNIBIGOSHISH_DAM		United

States						47								401							18

7220												WINIFRED		United

States						48								988							16

8.	 Show	some	stations	below	the	low	and	high	elevation	regression	lines:

>>>	high.loc[(high.latabs<5)	&

(high.avgtemp<18),\

...			['station','country','latabs','elevation','avgtemp']]

														station			country		latabs		elevation		avgtemp

2273		BOGOTA_ELDORADO		Colombia							5						2,548							15

2296									SAN_LUIS		Colombia							1						2,976							11

2327									IZOBAMBA			Ecuador							0						3,058							13

2331												CANAR			Ecuador							3						3,083							13

2332		LOJA_LA_ARGELIA			Ecuador							4						2,160							17

>>>	low.loc[(low.latabs<50)	&

(low.avgtemp<-9),

...			['station','country','latabs','elevation','avgtemp']]
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																		station								country		latabs		elevation		avgtemp

1204		FT_STEELE_DANDY_CRK									Canada						50								856						-12

1563															BALDUR									Canada						49								450						-11

1852							POINTE_CLAVEAU									Canada						48										4						-11

1881					CHUTE_DES_PASSES									Canada						50								398						-13

6627									PRESQUE_ISLE		United

States						47								183						-10

Scatter	plots	are	a	great	way	to	view	the	relationship	between	two	variables.
These	steps	also	show	how	we	can	display	that	relationship	for	different	subsets
of	our	data.

How	it	works…
We	can	run	a	scatter	plot	by	just	providing	column	names	for	x	and	y	and	a
data	frame.	Nothing	more	is	required.	We	get	the	same	access	to	the	attributes	of
the	figure	and	its	axes	that	we	get	when	we	run	histograms	and	boxplots—titles,
axis	labels,	tick	marks	and	labels,	and	so	on.	Note	that	to	access	attributes	such

as	labels	on	an	axis	(rather	than	on	the	figure),	we	use	set_xlabels	or

set_ylabels,	not	xlabels	or	ylabels.

3D	plots	are	a	little	more	complicated.	First,	we	need	to	have	imported	the

Axes3D	module.	Then,	we	set	the	projection	of	our	axes	to	3d

—plt.axes(projection='3d'),	as	we	do	in	Step	4.	We

can	then	use	the	scatter3D	method	for	each	subplot.
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Since	scatter	plots	are	designed	to	illustrate	the	relationship	between	a	regressor

(the	x	variable)	and	a	dependent	variable,	it	is	quite	helpful	to	see	a	least-
squares	regression	line	on	the	scatter	plot.	Seaborn	provides	two	methods	for

doing	that:	regplot	and	lmplot.	I	use	regplot	typically,	since

it	is	less	resource-intensive.	But	sometimes,	I	need	the	features	of	lmplot.

We	use	lmplot	and	its	hue	attribute	in	Step	6	to	generate	separate
regression	lines	for	each	elevation	level.

In	Steps	7	and	8,	we	view	some	of	the	outliers:	those	stations	with	temperatures
much	higher	or	lower	than	the	regression	line	for	their	group.	We	would	want	to

investigate	the	data	for	the	LAJES_AB	station	in	Portugal	and	the

WILD_HORSE_6N	station	in	the	United	States

((high.latabs>38)	&	(high.avgtemp>=18)).
The	average	temperatures	are	higher	than	would	be	predicted	at	the	latitude	and
elevation	level.	Similarly,	there	are	four	stations	in	Canada	and	one	in	the	United
States	that	are	at	low	elevation	and	have	lower	average	temperatures	than	would

be	expected	(low.latabs<50)	&

(low.avgtemp<-9)).

There's	more...
We	see	the	expected	relationship	between	latitude	and	average	temperatures.
Temperatures	fall	as	latitude	increases.	But	elevation	is	another	important	factor.
Being	able	to	visualize	all	three	variables	at	once	helps	us	identify	outliers	more
easily.	Of	course,	there	are	additional	factors	that	matter	for	temperatures,	such
as	warm	ocean	currents.	That	data	is	not	in	this	dataset,	unfortunately.
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Scatter	plots	are	great	for	visualizing	the	relationship	between	two	continuous
variables.	With	some	tweaking,	Matplotlib's	and	Seaborn's	scatter	plot	tools	can
also	provide	some	sense	of	relationships	between	three	variables—by	adding	a
third	dimension,	creative	use	of	colors	(when	the	third	dimension	is	categorical),
or	changing	the	size	of	the	dots	(the	Using	linear	regression	to	identify	data
points	with	high	influence	recipe	in	Chapter	4,	Identifying	Missing	Values	and
Outliers	in	Subsets	of	Data,	provides	an	example	of	that).

See	also
This	is	a	chapter	on	visualization,	and	identifying	unexpected	values	through
visualizations.	But	these	figures	also	scream	out	for	the	kind	of	multivariate
analyses	we	did	in	Chapter	4,	Identifying	Missing	Values	and	Outliers	in	Subsets
of	Data.	In	particular,	linear	regression	analysis,	and	a	close	look	at	the	residuals,
would	be	useful	for	identifying	outliers.

Using	 l ine	plots 	 to 	examine
trends	 in 	cont inuous	var iables
A	typical	way	to	visualize	values	for	a	continuous	variable	over	regular	intervals
of	time	is	through	a	line	plot,	though	sometimes	bar	charts	are	used	for	small
numbers	of	intervals.	We	will	use	line	plots	in	this	recipe	to	display	variable
trends,	and	examine	sudden	deviations	in	trends	and	differences	in	values	over
time	by	groups.
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Getting	ready
We	will	work	with	daily	Covid	case	data	in	this	recipe.	In	previous	recipes,	we
have	used	totals	by	country.	The	daily	data	provides	us	with	the	number	of	new
cases	and	new	deaths	each	day	by	country,	in	addition	to	the	same	demographic
variables	we	used	in	other	recipes.	You	will	need	Matplotlib	installed	to	run	the
code	in	this	recipe.

How	to	do	it…
We	use	line	plots	to	visualize	trends	in	daily	coronavirus	cases	and	deaths.	We
create	line	plots	by	region,	and	stacked	plots	to	get	a	better	sense	of	how	much
one	country	can	drive	the	number	of	cases	for	a	whole	region:

1.	 Import	pandas,	matplotlib,	and	the	matplotlib

dates	and	date	formatting	utilities:

>>>	import	pandas	as	pd

>>>	import	numpy	as	np

>>>	import	matplotlib.pyplot	as	plt

>>>	import	matplotlib.dates	as	mdates

>>>	from	matplotlib.dates	import

DateFormatter

>>>	coviddaily	=

pd.read_csv("data/coviddaily720.csv",

parse_dates=["casedate"])

2.	 View	a	couple	of	rows	of	the	Covid	daily	data:
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>>>	coviddaily.sample(2,

random_state=1).T

																									2478												9526

iso_code																		BRB													FRA

casedate											2020-06-

11						2020-02-16

location													Barbados										France

continent							North

America										Europe

new_cases																			4															0

new_deaths																		0															0

population												287,371						65,273,512

pop_density															664													123

median_age																	40														42

gdp_per_capita									16,978										38,606

hosp_beds																			6															6

region														Caribbean		Western

Europe

3.	 Calculate	new	cases	and	deaths	by	day.

Select	dates	between	2020-02-01	and	2020-07-12,	and	then	use	groupby
to	summarize	cases	and	deaths	across	all	countries	for	each	day:

>>>	coviddailytotals	=

coviddaily.loc[coviddaily.casedate.between('2020-
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02-01','2020-07-12')].\

...			groupby(['casedate'])

[['new_cases','new_deaths']].\

...			sum().\

...			reset_index()

>>>

>>>	coviddailytotals.sample(7,

random_state=1)

							casedate		new_cases		new_deaths

44			2020-03-

16					12,386									757

47			2020-03-

19					20,130									961

94			2020-05-

05					77,474							3,998

78			2020-04-

19					80,127							6,005

160		2020-07-

10				228,608							5,441

11			2020-02-

12						2,033										97

117		2020-05-

28				102,619							5,168

4.	 Show	line	plots	for	new	cases	and	new	deaths	by	day.

Telegram Channel @nettrain



Show	cases	and	deaths	on	different	subplots:

>>>	fig	=	plt.figure()

>>>	plt.suptitle("New	Covid	Cases	and

Deaths	By	Day	Worldwide	in

2020")

>>>	ax1	=	plt.subplot(2,1,1)

>>>

ax1.plot(coviddailytotals.casedate,

coviddailytotals.new_cases)

>>>

ax1.xaxis.set_major_formatter(DateFormatter("%b"))

>>>	ax1.set_xlabel("New	Cases")

>>>	ax2	=	plt.subplot(2,1,2)

>>>

ax2.plot(coviddailytotals.casedate,

coviddailytotals.new_deaths)

>>>

ax2.xaxis.set_major_formatter(DateFormatter("%b"))

>>>	ax2.set_xlabel("New	Deaths")

>>>	plt.tight_layout()

>>>	fig.subplots_adjust(top=0.88)

>>>	plt.show()

This	results	in	the	following	line	plots:

Telegram Channel @nettrain



Figure	5.21	–	Daily	trend	lines	of	worldwide	Covid	cases	and	deaths

5.	 Calculate	new	cases	and	deaths	by	day	and	region:

>>>	regiontotals	=

coviddaily.loc[coviddaily.casedate.between('2020-

02-01','2020-07-12')].\

...			groupby(['casedate','region'])

[['new_cases','new_deaths']].\

...			sum().\

...			reset_index()

>>>

>>>	regiontotals.sample(7,

random_state=1)

							casedate										region		new_cases		new_deaths
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1518	2020-05-16				North

Africa								634										28

2410	2020-07-11				Central

Asia						3,873										26

870		2020-04-05		Western

Europe					30,090							4,079

1894	2020-06-08		Western

Europe						3,712									180

790		2020-03-31		Western

Europe					30,180							2,970

2270	2020-07-02				North

Africa						2,006										89

306		2020-02-26			Oceania	/

Aus										0											0

6.	 Show	line	plots	of	new	cases	by	selected	regions.

Loop	through	the	regions	in	showregions.	Do	a	line	plot	of	the	total

new_cases	by	day	for	each	region.	Use	the	gca	method	to	get	the	x
axis	and	set	the	date	format:

>>>	showregions	=	['East

Asia','Southern	Africa','North

America',

...			'Western	Europe']

>>>

>>>	for	j	in	range(len(showregions)):
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...			rt	=

regiontotals.loc[regiontotals.region==showregions[j],

...					['casedate','new_cases']]

...			plt.plot(rt.casedate,

rt.new_cases,

label=showregions[j])

...

>>>	plt.title("New	Covid	Cases	By	Day

and	Region	in	2020")

>>>

plt.gca().get_xaxis().set_major_formatter(DateFormatter("%b"))

>>>	plt.ylabel("New	Cases")

>>>	plt.legend()

>>>	plt.show()

This	results	in	the	following	line	plots:
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Figure	5.22	–	Daily	trend	lines	of	Covid	cases	by	region

7.	 Use	a	stacked	plot	to	examine	the	uptick	in	Southern	Africa	more	closely.

See	whether	one	country	(South	Africa)	in	Southern	Africa	is	driving	the	trend

line.	Create	a	data	frame	(af)	for	new_cases	by	day	for	Southern

Africa	(the	region).	Add	a	series	for	new_cases	in	South	Africa	(the

country)	to	the	af	data	frame.	Then,	create	a	new	series	in	the	af	data
frame	for	Southern	Africa	cases	minus	South	African	cases

(afcasesnosa).	Select	only	data	from	April	or	later,	since	that	is
when	we	start	to	see	an	increase	in	new	cases:

>>>	af	=

regiontotals.loc[regiontotals.region=='Southern

Africa',

Telegram Channel @nettrain



...			['casedate','new_cases']].rename(columns=

{'new_cases':'afcases'})

>>>	sa	=

coviddaily.loc[coviddaily.location=='South

Africa',

...			['casedate','new_cases']].rename(columns=

{'new_cases':'sacases'})

>>>	af	=	pd.merge(af,	sa,	left_on=

['casedate'],	right_on=

['casedate'],	how="left")

>>>	af.sacases.fillna(0,

inplace=True)

>>>	af['afcasesnosa']	=	af.afcases-

af.sacases

>>>	afabb	=

af.loc[af.casedate.between('2020-

04-01','2020-07-12')]

>>>	fig	=	plt.figure()

>>>	ax	=	plt.subplot()

>>>	ax.stackplot(afabb.casedate,

afabb.sacases,

afabb.afcasesnosa,	labels=

['South	Africa','Other	Southern

Africa'])

Telegram Channel @nettrain



>>>

ax.xaxis.set_major_formatter(DateFormatter("%m-

%d"))

>>>	plt.title("New	Covid	Cases	in

Southern	Africa")

>>>	plt.tight_layout()

>>>	plt.legend(loc="upper	left")

>>>	plt.show()

This	results	in	the	following	stacked	plot:

Figure	5.23	–	Stacked	daily	trends	of	cases	in	South	Africa	and	the	rest	of	that
region	(Southern	Africa)

Telegram Channel @nettrain



These	steps	show	how	to	use	line	plots	to	examine	trends	in	a	variable	over	time,
and	how	to	display	trends	for	different	groups	on	one	figure.

How	it	works...
We	need	to	do	some	manipulation	of	the	daily	Covid	data	before	we	do	the	line

charts.	We	use	groupby	in	Step	3	to	summarize	new	cases	and	deaths	over

all	countries	for	each	day.	We	use	groupby	in	Step	5	to	summarize	cases
and	deaths	for	each	region	and	day.

In	Step	4,	we	set	up	our	first	subplot	with	plt.subplot(2,1,1).

That	will	give	us	a	figure	with	two	rows	and	one	column.	The	1	for	the	third
argument	indicates	that	this	subplot	will	be	the	first,	or	top,	subplot.	We	can	pass
a	data	series	for	date	and	for	the	values	for	the	y	axis.	So	far,	this	is	pretty	much

what	we	have	done	with	the	hist,	scatterplot,	boxplot,

and	violinplot	methods.	But	since	we	are	working	with	dates	here,	we
take	advantage	of	Matplotlib's	utilities	for	date	formatting	and	indicate	that	we
want	only	the	month	to	show,	with

xaxis.set_major_formatter(DateFormatter("%b"))

Since	we	are	working	with	subplots,	we	use	set_xlabel	rather	than

xlabel	to	indicate	the	label	we	want	for	the	x	axis.

We	show	line	plots	for	four	selected	regions	in	Step	6.	We	do	this	by	calling

plot	for	each	region	that	we	want	plotted.	We	could	have	done	it	for	all	of
the	regions,	but	it	would	have	been	too	difficult	to	view.

We	have	to	do	some	additional	manipulation	in	Step	7	to	pull	the	South	African
(the	country)	cases	out	of	the	cases	for	Southern	Africa	(the	region).	Once	we	do
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that,	we	can	do	a	stacked	plot	with	the	Southern	Africa	cases	(minus	South
Africa)	and	South	Africa.	This	figure	suggests	that	the	increase	in	cases	in
Southern	Africa	is	almost	completely	driven	by	increases	in	South	Africa.

There's	more…
The	figure	produced	in	Step	6	reveals	a	couple	of	potential	data	issues.	There	are
unusual	spikes	in	mid-February	in	East	Asia	and	in	late	April	in	North	America.
It	is	important	to	examine	these	anomalies	to	see	if	there	is	a	data	collection
error.

It	is	difficult	to	miss	how	much	the	trends	differ	by	region.	There	are	substantive
reasons	for	this,	of	course.	The	different	lines	reflect	what	we	know	to	be	reality
about	different	rates	of	spread	by	country	and	region.	However,	it	is	worth
exploring	any	significant	change	in	the	direction	or	slope	of	trend	lines	to	make
sure	that	we	can	confirm	that	the	data	is	accurate.	We	want	to	be	able	to	explain
what	happened	in	Western	Europe	in	early	April	and	in	North	America	and
Southern	Africa	in	early	June.	One	question	is	whether	the	trends	reflect	changes
in	the	whole	region	(such	as	with	the	decline	in	Western	Europe	in	early	April)
or	for	one	or	two	large	countries	in	the	region	(the	United	States	in	North
America	and	South	Africa	in	Southern	Africa).

See	also
We	cover	groupby	in	more	detail	in	Chapter	7,	Fixing	Messy	Data	When
Aggregating.	We	go	over	merging	data,	as	we	did	in	Step	7,	in	Chapter	8,
Addressing	Data	Issues	when	Combining	DataFrames.
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Generat ing	a 	heat 	map	based	on
a	correlat ion	matr ix
The	correlation	between	two	variables	is	a	measure	of	how	much	they	move
together.	A	correlation	of	1	means	that	the	two	variables	are	perfectly	positively
correlated.	As	one	variable	increases	in	size,	so	does	the	other.	A	value	of	-1
means	that	they	are	perfectly	negatively	correlated.	As	one	variable	increases	in
size,	the	other	decreases.	Correlations	of	1	or	-1	only	rarely	happen,	but
correlations	above	0.5	or	below	-0.5	might	still	be	meaningful.	There	are	several
tests	that	can	tell	us	whether	the	relationship	is	statistically	significant	(such	as
Pearson,	Spearman,	and	Kendall).	Since	this	is	a	chapter	on	visualizations,	we
will	focus	on	viewing	important	correlations.

Getting	ready
You	will	need	Matplotlib	and	Seaborn	installed	to	run	the	code	in	this	recipe.

Both	can	be	installed	by	using	pip,	with	the	pip	install

matplotlib	and	pip	install	seaborn	commands.

How	to	do	it…
We	first	show	part	of	a	correlation	matrix	of	the	Covid	data,	and	the	scatter	plots
of	some	key	relationships.	We	then	show	a	heat	map	of	the	correlation	matrix	to
visualize	the	correlations	between	all	variables:
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1.	 Import	matplotlib	and	seaborn,	and	load	the	Covid	totals
data:

>>>	import	pandas	as	pd

>>>	import	numpy	as	np

>>>	import	matplotlib.pyplot	as	plt

>>>	import	seaborn	as	sns

>>>	covidtotals	=

pd.read_csv("data/covidtotals.csv",

parse_dates=["lastdate"])

2.	 Generate	a	correlation	matrix.

View	part	of	the	matrix:

>>>	corr	=	covidtotals.corr()

>>>

corr[['total_cases','total_deaths','total_cases_pm','total_deaths_pm']]

																	total_cases		total_deaths		total_cases_pm		total_deaths_pm

total_cases													1.00										0.93												0.23													0.26

total_deaths												0.93										1.00												0.20													0.41

total_cases_pm										0.23										0.20												1.00													0.49

total_deaths_pm									0.26										0.41												0.49													1.00

population														0.34										0.28											-0.04												-0.00

pop_density												-0.03									-0.03												0.08													0.02

median_age														0.12										0.17												0.22													0.38

gdp_per_capita										0.13										0.16												0.58													0.37
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hosp_beds														-0.01									-0.01												0.02													0.09

3.	 Show	scatter	plots	of	median	age	and	gross	domestic	product	(GDP)	per
capita	by	cases	per	million.

Indicate	that	we	want	the	subplots	to	share	y	axis	values	with

sharey=True:

>>>	fig,	axes	=	plt.subplots(1,2,

sharey=True)

>>>

sns.regplot(covidtotals.median_age,

covidtotals.total_cases_pm,

ax=axes[0])

>>>

sns.regplot(covidtotals.gdp_per_capita,

covidtotals.total_cases_pm,

ax=axes[1])

>>>	axes[0].set_xlabel("Median	Age")

>>>	axes[0].set_ylabel("Cases	Per

Million")

>>>	axes[1].set_xlabel("GDP	Per

Capita")

>>>	axes[1].set_ylabel("")

>>>	plt.suptitle("Scatter	Plots	of

Age	and	GDP	with	Cases	Per

Million")
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>>>	plt.tight_layout()

>>>	fig.subplots_adjust(top=0.92)

>>>	plt.show()

This	results	in	the	following	scatter	plots:

Figure	5.24	–	Scatter	plots	of	median	age	and	GDP	by	cases	per	million	side
by	side

4.	 Generate	a	heat	map	of	the	correlation	matrix:

>>>	sns.heatmap(corr,

xticklabels=corr.columns,

yticklabels=corr.columns,

cmap="coolwarm")
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>>>	plt.title('Heat	Map	of

Correlation	Matrix')

>>>	plt.tight_layout()

>>>	plt.show()

This	results	in	the	following	heat	map:

Figure	5.25	–	Heat	map	of	Covid	data,	with	strongest	correlations	in	red	and
peach

Heat	maps	are	a	great	way	to	visualize	how	all	key	variables	in	our	data	frame
are	correlated	with	one	another.
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How	it	works…
The	corr	method	of	a	data	frame	generates	correlation	coefficients	of	all
numeric	variables	by	all	other	numeric	variables.	We	display	part	of	that	matrix
in	Step	2.	In	Step	3,	we	do	scatter	plots	of	median	age	by	cases	per	million,	and
GDP	per	capita	by	cases	per	million.	These	plots	give	a	sense	of	what	it	looks
like	when	the	correlation	is	0.22	(median	age	and	cases	per	million)	and	when	it
is	0.58	(GDP	per	capita	and	cases	per	million).	There	is	not	much	of	a
relationship	between	median	age	and	cases	per	million.	There	is	more	of	a
relationship	between	GDP	per	capita	and	cases	per	million.

The	heat	map	provides	a	visualization	of	the	correlation	matrix	we	created	in
Step	2.	All	of	the	red	squares	are	correlations	of	1.0	(which	is	the	correlation	of
the	variable	with	itself).	The	slightly	lighter	red	squares	are	between

total_cases	and	total_deaths	(0.93).	The	peach	squares
(those	with	correlations	between	0.55	and	0.65)	are	also	interesting.	GDP	per
capita,	median	age,	and	hospital	beds	per	1,000	people	are	positively	correlated
with	each	other,	and	GDP	per	capita	is	positively	correlated	with	cases	per
million.

There's	more…
I	find	it	helpful	to	always	have	a	correlation	matrix	or	heat	map	close	by	when	I
am	doing	exploratory	analysis	or	statistical	modeling.	I	understand	the	data
much	better	when	I	am	able	to	keep	these	bivariate	relationships	in	mind.
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See	also
We	go	over	tools	for	examining	the	relationship	between	two	variables	in	more
detail	in	the	Identifying	outliers	and	unexpected	values	in	bivariate	relationships
recipe	in	Chapter	4,	Identifying	Missing	Values	and	Outliers	in	Subsets	of	Data.
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Chapter 	6: 	Cleaning	and
Exploring	Data 	with	Series
Operat ions
We	can	view	the	recipes	in	the	first	few	chapters	of	this	book	as,	essentially,
diagnostic.	We	imported	some	raw	data	and	then	generated	descriptive	statistics
about	key	variables.	This	gave	us	a	sense	of	how	the	values	for	those	variables
were	distributed	and	helped	us	identify	outliers	and	unexpected	values.	We	then
examined	the	relationships	between	variables	to	look	for	patterns,	and	deviations
from	those	patterns,	including	logical	inconsistencies.	In	short,	our	primary	goal
so	far	has	been	to	figure	out	what	is	going	on	with	our	data.

The	recipes	in	this	chapter	demonstrate	how	to	use	pandas	methods	to	update
series	values	once	we	have	figured	out	what	needs	to	be	done.	Ideally,	we	need
to	take	the	time	to	carefully	examine	our	data	before	manipulating	the	values	of
our	variables.	We	should	have	measures	of	central	tendency,	indicators	of
distribution	shape	and	spread,	correlations,	and	visualizations	in	front	of	us
before	we	update	the	variable's	values,	or	before	creating	new	variables	based	on
them.	We	should	also	have	a	good	sense	of	outliers	and	missing	values,
understand	how	they	affect	summary	statistics,	and	have	preliminary	plans	for
imputing	new	values	or	otherwise	adjusting	them.

Having	done	that,	we	will	be	ready	to	perform	some	data	cleaning	tasks.	These
tasks	usually	involve	working	directly	with	a	pandas	series	object,	regardless	of
whether	we	are	changing	values	for	an	existing	series	or	creating	a	new	one.
This	often	involves	changing	values	conditionally,	altering	only	those	values	that
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meet	specific	criteria,	or	assigning	multiple	possible	values	based	on	existing
values	for	that	series,	or	values	for	another	series.

How	we	assign	such	values	varies	significantly	by	the	series'	data	type,	either	for
the	series	to	be	changed	or	a	criterion	series.	Querying	and	cleaning	string	data
bears	little	resemblance	to	those	tasks	containing	date	or	numeric	data.	With
strings,	we	often	need	to	evaluate	whether	some	string	fragment	does	or	does	not
have	a	certain	value,	strip	the	string	of	some	meaningless	characters,	or	convert
the	value	into	a	numeric	or	date	value.	With	dates,	we	might	need	to	look	for
invalid	or	out-of-range	dates,	or	even	calculate	date	intervals.

Fortunately,	pandas	series	have	an	enormous	number	of	tools	for	manipulating
string,	numeric,	and	date	values.	We	will	explore	many	of	the	most	useful	tools
in	this	chapter.	Specifically,	we	will	cover	the	following	recipes:

Getting	values	from	a	pandas	series

Showing	summary	statistics	for	a	pandas	series

Changing	series	values

Changing	series	values	conditionally

Evaluating	and	cleaning	string	series	data

Working	with	dates

Identifying	and	cleaning	missing	data

Missing	value	imputation	with	k-nearest	neighbor

Let's	get	started!

Technical 	 requirements
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The	code	and	notebooks	for	this	chapter	are	available	on	GitHub	at
https://github.com/PacktPublishing/Python-Data-Cleaning-Cookbook

Gett ing	values 	 f rom	a	pandas
ser ies
A	pandas	series	is	a	one-dimensional	array-like	structure	that	takes	a	NumPy
data	type.	Each	series	also	has	an	index;	that	is,	an	array	of	data	labels.	If	an
index	is	not	specified	when	the	series	is	created,	it	will	be	the	default	index	of	0
through	N-1.

There	are	several	ways	to	create	a	pandas	series,	including	from	a	list,	dictionary,
NumPy	array,	or	a	scalar.	In	our	data	cleaning	work,	we	will	most	frequently	be
accessing	data	series	that	contain	columns	of	data	frames,	using	either	attribute

access	(dataframename.columname)	or	bracket	notation

(dataframename['columnname']).	Attribute	access
cannot	be	used	to	set	values	for	series,	but	bracket	notation	will	work	for	all
series	operations.

In	this	recipe,	we'll	explore	several	ways	we	can	get	values	from	a	pandas	series.
These	techniques	are	very	similar	to	the	methods	we	used	to	get	rows	from	a
pandas	DataFrame,	which	we	covered	in	the	Selecting	rows	recipe	of	Chapter	3,
Taking	the	Measure	of	Your	Data.

Getting	ready
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We	will	be	working	with	data	from	the	National	Longitudinal	Survey	(NLS)	in
this	recipe	–	primarily	with	data	about	each	respondent's	overall	high	school
Grade	Point	Average	(GPA).

DATA	NOTE
The	National	Longitudinal	Survey	of	Youth	is	conducted	by	the	United	States
Bureau	of	Labor	Statistics.	This	survey	started	with	a	cohort	of	individuals	in
1997	who	were	born	between	1980	and	1985,	with	annual	follow-ups	each	year
until	2017.	Survey	data	is	available	for	public	use	at	nlsinfo.org.

How	to	do	it…
For	this	recipe,	we	must	select	series	values	using	the	bracket	operator	and	the

loc	and	iloc	accessors.	Let's	get	started:

1.	 Import	pandas	and	the	required	NLS	data:

>>>	import	pandas	as	pd

>>>	nls97	=

pd.read_csv("data/nls97b.csv")

>>>	nls97.set_index("personid",

inplace=True)

2.	 Create	a	series	from	the	GPA	overall	column.

Show	the	first	few	values	and	associated	index	labels	using	head.	The

default	number	of	values	shown	for	head	is	5.	The	index	for	the	series	is

the	same	as	the	DataFrame's	index,	which	is	personid:
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>>>	gpaoverall	=	nls97.gpaoverall

>>>	type(gpaoverall)

<class	'pandas.core.series.Series'>

>>>	gpaoverall.head()

personid

100061			3.06

100139				nan

100284				nan

100292			3.45

100583			2.91

Name:	gpaoverall,	dtype:	float64

>>>	gpaoverall.index

Int64Index([100061,	100139,	100284,

100292,	100583,	100833,	100931,

101089,

												101122,	101132,

												...

												998997,	999031,	999053,

999087,	999103,	999291,	999406,

999543,

												999698,	999963],

											dtype='int64',

name='personid',	length=8984)
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3.	 Select	GPA	values	using	the	bracket	operator.

Use	slicing	to	create	a	series	with	every	value	from	the	first	value	to	the	fifth.

Notice	that	we	get	the	same	values	that	we	got	with	the	head	method	in
step	2.	Not	including	a	value	to	the	left	of	the	colon	in

gpaoverall[:5]	means	that	it	must	start	from	the	beginning.

gpaoverall[0:5]	will	give	the	same	results.	Similarly,

gpaoverall[-5:]	shows	the	values	from	the	fifth	to	the	last
position.	This	produces	the	same	results	as

gpaoverall.tail():

>>>	gpaoverall[:5]

personid

100061			3.06

100139				nan

100284				nan

100292			3.45

100583			2.91

Name:	gpaoverall,	dtype:	float64

>>>	gpaoverall.tail()

personid

999291			3.11

999406			2.17

999543				nan

999698				nan
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999963			3.78

Name:	gpaoverall,	dtype:	float64

>>>	gpaoverall[-5:]

personid

999291			3.11

999406			2.17

999543				nan

999698				nan

999963			3.78

Name:	gpaoverall,	dtype:	float64

4.	 Select	values	using	the	loc	accessor.

We	pass	an	index	label	(a	value	for	personid)	to	the	loc	accessor	to
return	a	scalar.	We	get	a	series	if	we	pass	a	list	of	index	labels,	regardless	of
whether	there's	one	or	more.	We	can	even	pass	a	range,	separated	by	a	colon.
We'll	do	this	here	with

gpaoverall.loc[100061:100833]:

>>>	gpaoverall.loc[100061]

3.06

>>>	gpaoverall.loc[[100061]]

personid

100061			3.06

Name:	gpaoverall,	dtype:	float64
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>>>

gpaoverall.loc[[100061,100139,100284]]

personid

100061			3.06

100139				nan

100284				nan

Name:	gpaoverall,	dtype:	float64

>>>	gpaoverall.loc[100061:100833]

personid

100061			3.06

100139				nan

100284				nan

100292			3.45

100583			2.91

100833			2.46

Name:	gpaoverall,	dtype:	float64

5.	 Select	values	using	the	iloc	accessor.

iloc	differs	from	loc	in	that	it	takes	a	list	of	row	numbers	rather	than
labels.	It	works	similarly	to	bracket	operator	slicing.	In	this	step,	we	pass	a
one-item	list	with	the	value	of	0.	We	then	pass	a	five-item	list,

[0,1,2,3,4],	to	return	a	series	containing	the	first	five	values.	We

get	the	same	result	if	we	pass	[:5]	to	the	accessor:

>>>	gpaoverall.iloc[[0]]
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personid

100061			3.06

Name:	gpaoverall,	dtype:	float64

>>>	gpaoverall.iloc[[0,1,2,3,4]]

personid

100061			3.06

100139				nan

100284				nan

100292			3.45

100583			2.91

Name:	gpaoverall,	dtype:	float64

>>>	gpaoverall.iloc[:5]

personid

100061			3.06

100139				nan

100284				nan

100292			3.45

100583			2.91

Name:	gpaoverall,	dtype:	float64

>>>	gpaoverall.iloc[-5:]

personid

999291			3.11

999406			2.17
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999543				nan

999698				nan

999963			3.78

Name:	gpaoverall,	dtype:	float64

Each	of	these	ways	of	accessing	pandas	series	values	–	the	bracket	operator,	the

loc	accessor,	and	the	iloc	accessor	–	have	many	use	cases,	particularly

the	loc	accessor.

How	it	works...
We	used	the	[]	bracket	operator	in	step	3	to	perform	standard	Python-like
slicing	to	create	a	series.	This	operator	allows	us	to	easily	select	data	based	on
position	using	a	list,	or	a	range	of	values	indicated	with	slice	notation.	This

notation	takes	the	form	of	[start:end:step],	where	1	is	assumed	for	step	if	no

value	is	provided.	When	a	negative	number	is	used	for	start,	it	represents
the	number	of	rows	from	the	end	of	the	original	series.

The	loc	accessor,	used	in	step	4,	selects	data	by	index	labels.	Since

personid	is	the	index	for	the	series,	we	can	pass	a	list	of	one	or	more

personid	values	to	the	loc	accessor	to	get	a	series	with	those	labels
and	associated	GPA	values.	We	can	also	pass	a	range	of	labels	to	the	accessor,
which	will	return	a	series	with	GPA	values	from	the	index	label	to	the	left	of	the
colon	and	the	index	label	to	the	right	inclusive.	So,	here,

gpaoverall.loc[100061:100833]	returns	a	series

with	GPA	values	for	personid	between	100061	and	100833,	including
those	two	values.
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As	shown	in	step	5,	the	iloc	accessor	takes	row	positions	rather	than	index
labels.	We	can	pass	either	a	list	of	integers	or	a	range	using	slicing	notation.

Showing	summary	s ta t is t ics 	 for
a 	pandas	ser ies
There	are	a	large	number	of	pandas	series	methods	for	generating	summary
statistics.	We	can	easily	get	the	mean,	median,	maximum,	or	minimum	values

for	a	series	with	the	mean,	median,	max,	and	min	methods,

respectively.	The	incredibly	handy	describe	method	will	return	all	of
these	statistics,	as	well	as	several	others.	We	can	also	get	the	series	value	at	any

percentile	using	quantile.	These	methods	can	be	used	across	all	values
for	a	series,	or	just	for	selected	values.	This	will	be	demonstrated	in	this	recipe.

Getting	ready
We	will	continue	working	with	the	overall	GPA	column	from	the	NLS.

How	to	do	it...
Let's	take	a	good	look	at	the	distribution	of	the	overall	GPA	for	the	DataFrame
and	for	the	selected	rows.	To	do	this,	follow	these	steps:

1.	 Import	pandas	and	numpy	and	load	the	NLS	data:

>>>	import	pandas	as	pd

>>>	import	numpy	as	np
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>>>	nls97	=

pd.read_csv("data/nls97b.csv")

>>>	nls97.set_index("personid",

inplace=True)

2.	 Gather	some	descriptive	statistics:

>>>	gpaoverall	=	nls97.gpaoverall

>>>	gpaoverall.mean()

2.8184077281812145

>>>	gpaoverall.describe()

count			6,004.00

mean								2.82

std									0.62

min									0.10

25%									2.43

50%									2.86

75%									3.26

max									4.17

Name:	gpaoverall,	dtype:	float64

>>>

gpaoverall.quantile(np.arange(0.1,1.1,0.1))

0.10			2.02

0.20			2.31

0.30			2.52
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0.40			2.70

0.50			2.86

0.60			3.01

0.70			3.17

0.80			3.36

0.90			3.60

1.00			4.17

Name:	gpaoverall,	dtype:	float64

3.	 Show	descriptives	for	a	subset	of	the	series:

>>>

gpaoverall.loc[gpaoverall.between(3,3.5)].head(5)

personid

100061			3.06

100292			3.45

101526			3.37

101527			3.26

102125			3.14

Name:	gpaoverall,	dtype:	float64

>>>

gpaoverall.loc[gpaoverall.between(3,3.5)].sum()

1679

>>>	gpaoverall.loc[(gpaoverall<2)	|

(gpaoverall>4)].sample(5,
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random_state=2)

personid

932782			1.90

561335			1.82

850001			4.10

292455			1.97

644271			1.97

Name:	gpaoverall,	dtype:	float64

>>>

gpaoverall.loc[gpaoverall>gpaoverall.quantile(0.99)].\

...			agg(['count','min','max'])

count			60.00

min						3.98

max						4.17

Name:	gpaoverall,	dtype:	float64

4.	 Test	for	a	condition	across	all	values.

Check	whether	any	GPA	values	are	above	4	and	if	all	the	values	are	above	or
equal	to	0.	Also,	count	how	many	values	are	missing:

>>>	(gpaoverall>4).any()	#	any	person

has	GPA	greater	than	4

True

>>>	(gpaoverall>=0).all()	#	all

people	have	GPA	greater	than	or

Telegram Channel @nettrain



equal	0

False

>>>	(gpaoverall>=0).sum()	#	of	people

with	GPA	greater	than	or	equal

0

6004

>>>	(gpaoverall==0).sum()	#	of	people

with	GPA	equal	to	0

0

>>>	gpaoverall.isnull().sum()	#	of

people	with	missing	value	for

GPA

2980

5.	 Show	descriptives	for	a	subset	of	the	series	based	on	values	in	a	different
column.

Show	the	mean	high	school	GPA	for	individuals	with	a	wage	income	in	2016
that's	above	the	75th	percentile,	as	well	as	for	those	with	a	wage	income	that's
below	the	25th	percentile:

>>>	nls97.loc[nls97.wageincome	>

nls97.wageincome.quantile(0.75),'gpaoverall'].mean()

3.0804171011470256

>>>	nls97.loc[nls97.wageincome	<

nls97.wageincome.quantile(0.25),'gpaoverall'].mean()

2.720143415906124
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6.	 Show	descriptives	and	frequencies	for	a	series	containing	categorical	data:

>>>	nls97.maritalstatus.describe()

count								6672

unique										5

top							Married

freq									3066

Name:	maritalstatus,	dtype:	object

>>>

nls97.maritalstatus.value_counts()

Married										3066

Never-married				2766

Divorced										663

Separated									154

Widowed												23

Name:	maritalstatus,	dtype:	int64

Once	we	have	a	series,	we	can	use	a	wide	variety	of	pandas	tools	to	calculate
descriptive	statistics	for	all	or	part	of	that	series.

How	it	works…
The	series	describe	method	is	quite	useful	as	it	gives	us	a	good	sense	of
the	central	tendency	and	spread	of	continuous	variables.	It	is	also	often	helpful	to
see	the	value	at	each	decile.	We	obtained	this	in	step	2	by	passing	a	list	of	values

ranging	from	0.1	to	1.1	to	the	quantile	method	of	the	series.
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We	can	use	these	methods	on	subsets	of	a	series.	In	step	3,	we	obtained	the	count
of	GPA	values	between	3	and	3.5.	We	can	also	select	values	based	on	their
relationship	to	a	summary	statistic;	for	example,

gpaoverall>gpaoverall.quantile(0.99)

selects	values	from	the	GPA	that	are	greater	than	the	99th	percentile	value.	We

then	pass	the	resulting	series	to	the	agg	method	using	method	chaining,	which
returns	multiple	summary	statistics

(agg(['count','min','max'])).

Sometimes,	all	we	need	to	do	is	test	whether	some	condition	is	true	across	all	the

values	in	a	series.	The	any	and	all	methods	are	useful	for	this.	any

returns	True	when	at	least	one	value	in	the	series	satisfies	the	condition	(such

as	(gpaoverall>4).any()).	all	returns	True	when	all	the
values	in	the	series	satisfy	the	condition.	When	we	chain	the	test	condition	with

sum	((gpaoverall>=0).sum()),	we	get	a	count	of	all	the

True	values	since	pandas	interprets	True	values	as	1	when	performing
numeric	operations.

(gpaoverall>4)	is	a	shorthand	for	creating	a	Boolean	series	with

the	same	index	as	gpaoverall.	It	has	a	value	of	True	when

gpaoverall	is	greater	than	4,	and	False	otherwise:

>>>	(gpaoverall>4)

personid

100061				False

100139				False

100284				False
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100292				False

100583				False

										...		

999291				False

999406				False

999543				False

999698				False

999963				False

Name:	gpaoverall,	Length:	8984,	dtype:

bool

We	often	need	to	generate	summary	statistics	for	a	series	that	has	been	filtered
by	another	series.	We	did	this	in	step	5	by	calculating	the	mean	high	school	GPA
for	individuals	with	a	wage	income	that's	above	the	third	quartile,	as	well	as	for
individuals	with	a	wage	income	that's	below	the	first	quartile.

The	describe	method	is	most	useful	with	continuous	variables,	such	as

gpaoverall;,	but	it	also	provides	useful	information	when	used	with

categorical	variables,	such	as	maritalstatus	(see	step	6).	This
returns	the	count	of	non-missing	values,	the	number	of	different	values,	the
category	that	occurs	most	frequently,	and	the	frequency	of	that	category.

However,	when	working	with	categorical	data,	the	value_counts
method	is	more	frequently	used.	It	provides	the	frequency	of	each	category	in
the	series.
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There's	more…
Working	with	series	is	so	fundamental	to	pandas	data	cleaning	tasks	that	data
analysts	quickly	find	that	the	tools	that	were	used	in	this	recipe	are	part	of	their
daily	data	cleaning	workflow.	Typically,	not	much	time	elapses	between	the

initial	data	import	stage	and	using	series	methods	such	as	describe,

mean,	sum,	isnull,	all,	and	any.

See	also
This	chapter	is	just	an	introduction	to	how	to	generate	statistics	and	test	for
conditions	with	series.	The	recipes	in	Chapter	3,	Taking	the	Measure	of	Your
Data,	go	into	this	in	more	detail.	We	are	also	only	scratching	the	surface	on
aggregating	data	in	this	chapter.	We'll	go	through	this	more	thoroughly	in
Chapter	7,	Fixing	Messy	Data	when	Aggregating.

Changing	ser ies 	values
During	the	data	cleaning	process,	we	often	need	to	change	the	values	in	a	data
series	or	create	a	new	one.	We	can	change	all	the	values	in	a	series,	or	just	the
values	in	a	subset	of	our	data.	Most	of	the	techniques	we	have	been	using	to	get
values	from	a	series	can	be	used	to	update	series	values,	though	some	minor
modifications	are	necessary.

Getting	ready
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We	will	work	with	the	overall	high	school	GPA	column	from	the	National
Longitudinal	Survey	in	this	recipe.

How	to	do	it…
We	can	change	the	values	in	a	pandas	series	for	all	rows,	as	well	as	for	selected
rows.	We	can	update	a	series	with	scalars,	by	performing	arithmetic	operations
on	other	series,	and	by	using	summary	statistics.	Let's	take	a	look	at	this:

1.	 Import	pandas	and	load	the	NLS	data:

>>>	import	pandas	as	pd

>>>	nls97	=

pd.read_csv("data/nls97b.csv")

>>>	nls97.set_index("personid",

inplace=True)

2.	 Edit	all	the	values	based	on	a	scalar.

Multiply	gpaoverall	by	100:

>>>	nls97.gpaoverall.head()

personid

100061			3.06

100139				nan

100284				nan

100292			3.45

100583			2.91
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Name:	gpaoverall,	dtype:	float64

>>>	gpaoverall100	=

nls97['gpaoverall']	*	100

>>>	gpaoverall100.head()

personid

100061			306.00

100139						nan

100284						nan

100292			345.00

100583			291.00

Name:	gpaoverall,	dtype:	float64

3.	 Set	values	using	index	labels.

Use	the	loc	accessor	to	specify	which	values	to	change	by	index	label:

>>>	nls97.loc[[100061],	'gpaoverall']

=	3

>>>

nls97.loc[[100139,100284,100292],'gpaoverall']

=	0

>>>	nls97.gpaoverall.head()

personid

100061			3.00

100139			0.00

100284			0.00
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100292			0.00

100583			2.91

Name:	gpaoverall,	dtype:	float64

4.	 Set	values	using	an	operator	on	more	than	one	series.

Use	the	+	operator	to	calculate	the	number	of	children,	which	is	the	sum	of
children	who	live	at	home	and	children	who	do	not	live	at	home:

>>>	nls97['childnum']	=

nls97.childathome	+

nls97.childnotathome

>>>

nls97.childnum.value_counts().sort_index()

0.00							23

1.00					1364

2.00					1729

3.00					1020

4.00						420

5.00						149

6.00							55

7.00							21

8.00								7

9.00								1

12.00							2

Name:	childnum,	dtype:	int64
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5.	 Set	the	values	for	a	summary	statistic	using	index	labels.

Use	the	loc	accessor	to	select	personid	values	from	100061	to
100292:

>>>

nls97.loc[100061:100292,'gpaoverall']

=	nls97.gpaoverall.mean()

>>>	nls97.gpaoverall.head()

personid

100061			2.82

100139			2.82

100284			2.82

100292			2.82

100583			2.91

Name:	gpaoverall,	dtype:	float64

6.	 Set	the	values	using	position.

Use	the	iloc	accessor	to	select	by	position.	An	integer,	or	slice	notation

(start:end:step),	can	be	used	to	the	left	of	the	comma	to
indicate	the	rows	where	the	values	should	be	changed.	An	integer	is	used	to

the	right	of	the	comma	to	select	the	column.	The	gpaoverall	column
is	in	the	14th	position	(which	is	13	since	the	column	index	is	zero-based):

>>>	nls97.iloc[0,	13]	=	2

>>>	nls97.iloc[1:4,	13]	=	1

>>>	nls97.gpaoverall.head()
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personid

100061			2.00

100139			1.00

100284			1.00

100292			1.00

100583			2.91

Name:	gpaoverall,	dtype:	float64

7.	 Set	the	GPA	values	after	filtering.

Change	all	GPA	values	over	4	to	4:

>>>	nls97.gpaoverall.nlargest()

personid

312410			4.17

639701			4.11

850001			4.10

279096			4.08

620216			4.07

Name:	gpaoverall,	dtype:	float64

>>>	nls97.loc[nls97.gpaoverall>4,

'gpaoverall']	=	4

>>>	nls97.gpaoverall.nlargest()

personid

112756			4.00
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119784			4.00

160193			4.00

250666			4.00

271961			4.00

Name:	gpaoverall,	dtype:	float64

The	preceding	steps	showed	us	how	to	update	series	values	with	scalars,
arithmetic	operations,	and	summary	statistics	values.

How	it	works…
The	first	thing	to	observe	is	that,	in	step	2,	pandas	vectorizes	the	division	by	a
scalar.	It	knows	that	we	want	to	apply	the	scalar	to	all	rows.

nls97['gpaoverall']	*	100	essentially	creates	a
temporary	series	with	all	values	set	to	100,	and	with	the	same	index	as	the

gpaoverall	series.	It	then	multiplies	gpaoverall	by	that	series
of	100	values.	This	is	known	as	broadcasting.

We	can	use	a	lot	of	what	we	learned	in	the	first	recipe	of	this	chapter,	about	how
to	get	values	from	a	series,	to	select	particular	values	to	update.	The	main

difference	here	is	that	we	use	the	loc	and	iloc	accessors	of	the	DataFrame

(nls97.loc)	rather	than	the	series

(nls97.gpaoverall.loc).	This	is	to	avoid	the	dreaded

SettingwithCopyWarning,	which	warns	us	about	setting
values	on	a	copy	of	a	DataFrame.

nls97.gpaoverall.loc[[100061]]	=	3	triggers
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that	warning,	while	nls97.loc[[100061],

'gpaoverall']	=	3	does	not.

In	step	4,	we	saw	how	pandas	handles	numeric	operations	with	two	or	more
series.	Operations	such	as	addition,	subtraction,	multiplication,	and	division	are
very	much	like	the	operations	performed	on	scalars	in	standard	Python,	only
with	vectorization.	(This	is	made	possible	by	pandas'	index	alignment.
Remember	that	a	series	in	a	DataFrame	will	have	the	same	index.)	If	you	are
familiar	with	NumPy,	then	you	already	have	a	good	idea	of	how	this	works.

There's	more…
It	is	useful	to	notice	that	nls97.loc[[100061],

'gpaoverall']	returns	a	series,	while

nls97.loc[[100061],	['gpaoverall']]	returns
a	DataFrame:

>>>	type(nls97.loc[[100061],

'gpaoverall'])

<class	'pandas.core.series.Series'>

>>>	type(nls97.loc[[100061],

['gpaoverall']])

<class	'pandas.core.frame.DataFrame'>

If	the	second	argument	of	the	loc	accessor	is	a	string,	it	will	return	a	series.	If
it	is	a	list,	even	if	the	list	contains	only	one	item,	it	will	return	a	DataFrame.
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For	any	of	the	operations	we	discussed	in	this	recipe,	it	is	good	to	be	mindful	of
how	pandas	treats	missing	values.	For	example,	in	step	3,	if	either

childathome	or	childnotathome	is	missing,	then	the

operation	will	return	missing.	We'll	discuss	how	to	handle	situations	like
this	in	the	Identifying	and	cleaning	missing	data	recipe	in	this	chapter.

See	also
Chapter	3,	Taking	the	Measure	of	Your	Data,	goes	into	greater	detail	on	the	use

of	the	loc	and	iloc	accessors,	particularly	in	the	Selecting	rows	and
Selecting	and	organizing	columns	recipes.

Changing	ser ies 	values
condi t ional ly
So,	changing	series	values	is	often	more	complicated	than	the	previous	recipe
suggests.	We	often	need	to	set	series	values	based	on	the	values	of	one	or	more
other	series	for	that	row	of	data.	This	is	complicated	further	when	we	need	to	set
series	values	based	on	values	from	other	rows;	say,	a	previous	value	for	an
individual,	or	the	mean	for	a	subset.	We	will	deal	with	these	complications	in
this	and	the	next	recipe.

Getting	ready
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We	will	work	with	land	temperature	data	and	the	National	Longitudinal	Survey
data	in	this	recipe.

DATA	NOTE
The	land	temperature	dataset	contains	the	average	temperature	readings	(in
Celsius)	in	2019	from	over	12,000	stations	across	the	world,	though	the	majority
of	the	stations	are	in	the	United	States.	The	raw	data	was	retrieved	from	the
Global	Historical	Climatology	Network	integrated	database.	It	has	been	made
available	for	public	use	by	the	United	States	National	Oceanic	and	Atmospheric
Administration	at	https://www.ncdc.noaa.gov/data-access/land-based-station-
data/land-based-datasets/global-historical-climatology-network-monthly-
version-4.

How	to	do	it…
We	will	use	NumPy's	where	and	select	methods	to	assign	series
values	based	on	the	values	of	that	series,	the	values	of	other	series,	and	summary

statistics.	We'll	then	use	the	lambda	and	apply	functions	to	construct
more	complicated	criteria	for	assignment.	Let's	get	started:

1.	 Import	pandas	and	numpy,	and	then	load	the	NLS	and	land
temperatures	data:

>>>	import	pandas	as	pd

>>>	import	numpy	as	np

>>>	nls97	=

pd.read_csv("data/nls97b.csv")
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>>>	nls97.set_index("personid",

inplace=True)

>>>	landtemps	=

pd.read_csv("data/landtemps2019avgs.csv")

2.	 Use	NumPy's	where	function	to	create	a	categorical	series	containing	two
values.

First,	do	a	quick	check	of	the	distribution	of	elevation	values:

>>>

landtemps.elevation.quantile(np.arange(0.2,1.1,0.2))

0.20						48.00

0.40					190.50

0.60					393.20

0.80			1,066.80

1.00			9,999.00

Name:	elevation,	dtype:	float64

>>>	landtemps['elevation_group']	=

np.where(landtemps.elevation>landtemps.elevation.quantile(0.8),'High','Low')

>>>	landtemps.elevation_group	=

landtemps.elevation_group.astype('category')

>>>

landtemps.groupby(['elevation_group'])

['elevation'].\

agg(['count','min','max'])
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																	count						min						max

elevation_group																									

High														2409	1,067.00

9,999.00

Low															9686		-350.00

1,066.80

3.	 Use	NumPy's	where	method	to	create	a	categorical	series	containing	three
values.

Set	values	above	the	80th	percentile	to	'High',	values	above	the	median

and	up	to	the	80th	percentile	to	'Medium',	and	the	remaining	values	to

'Low':

>>>	landtemps.elevation.median()

271.3

>>>	landtemps['elevation_group']	=

np.where(landtemps.elevation>

...			landtemps.elevation.quantile(0.8),'High',np.where(landtemps.elevation>

...			landtemps.elevation.median(),'Medium','Low'))

>>>	landtemps.elevation_group	=

landtemps.elevation_group.astype('category')

>>>

landtemps.groupby(['elevation_group'])

['elevation'].agg(['count','min','max'])

																	count						min						max

elevation_group																									
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High														2409	1,067.00

9,999.00

Low															6056		-350.00			271.30

Medium												3630			271.40

1,066.80

4.	 Use	NumPy's	select	method	to	evaluate	a	list	of	conditions.

First,	set	up	a	list	of	test	conditions	and	another	list	for	the	result.	We	want
individuals	with	a	GPA	less	than	2	and	no	degree	earned	to	be	in	one	category,
individuals	with	no	degree	but	with	a	higher	GPA	to	be	in	a	second	category,
individuals	with	a	degree	but	a	low	GPA	in	a	third	category,	and	the	remaining
individuals	in	a	fourth	category:

>>>	test	=	[(nls97.gpaoverall<2)	&

(nls97.highestdegree=='0.

None'),

nls97.highestdegree=='0.	None',

nls97.gpaoverall<2]

>>>	result	=	['1.	Low	GPA	and	No

Diploma','2.	No	Diploma','3.

Low	GPA']

>>>	nls97['hsachieve']	=

np.select(test,	result,	'4.	Did

Okay')

>>>

nls97[['hsachieve','gpaoverall','highestdegree']].head()

														hsachieve		gpaoverall			highestdegree
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personid																																											

100061						4.	Did

Okay								3.06		2.	High

School

100139						4.	Did

Okay									nan		2.	High

School

100284				2.	No

Diploma									nan									0.

None

100292						4.	Did

Okay								3.45				4.

Bachelors

100583						4.	Did

Okay								2.91		2.	High

School

>>>

nls97.hsachieve.value_counts().sort_index()

1.	Low	GPA	and	No	Diploma						95

2.	No	Diploma																	858

3.	Low	GPA																				459

4.	Did	Okay																		7572

Name:	hsachieve,	dtype:	int64

5.	 Use	lambda	to	test	several	columns	in	one	statement.
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The	colenr	columns	have	the	enrollment	status	in	February	and	October
of	each	year	for	each	person.	We	want	to	test	whether	any	of	the	college

enrollment	columns	have	a	value	of	3.	4-year	college.	Use

filter	to	create	a	DataFrame	of	the	colenr	columns.	Then,	use

apply	to	call	a	lambda	function	that	tests	the	first	character	of	each

colenr	column.	(We	can	just	look	at	the	first	character	and	see	whether	it

has	a	value	of	3.)	That	is	then	passed	to	any	to	evaluate	whether	any	(one	or
more)	of	the	columns	has	a	3	as	its	first	character.	(We	only	show	values	for
college	enrollment	between	2000	and	2004	due	to	space	considerations,	but
we	check	all	the	values	for	the	college	college	enrollment	columns	between
1997	and	2017.)	This	can	be	seen	in	the	following	code:

>>>	nls97.loc[[100292,100583,100139],

'colenrfeb00':'colenroct04'].T

personid																100292													100583											100139

colenrfeb00				1.	Not	enrolled				1.

Not	enrolled		1.	Not	enrolled

colenroct00		3.	4-year	college				1.

Not	enrolled		1.	Not	enrolled

colenrfeb01		3.	4-year	college				1.

Not	enrolled		1.	Not	enrolled

colenroct01		3.	4-year	college		3.	4-

year	college		1.	Not	enrolled

colenrfeb02		3.	4-year	college		3.	4-

year	college		1.	Not	enrolled
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colenroct02		3.	4-year	college				1.

Not	enrolled		1.	Not	enrolled

colenrfeb03		3.	4-year	college				1.

Not	enrolled		1.	Not	enrolled

colenroct03		3.	4-year	college				1.

Not	enrolled		1.	Not	enrolled

colenrfeb04		3.	4-year	college				1.

Not	enrolled		1.	Not	enrolled

colenroct04				1.	Not	enrolled				1.

Not	enrolled		1.	Not	enrolled

>>>	nls97['baenrollment']	=

nls97.filter(like="colenr").\

...			apply(lambda	x:

x.str[0:1]=='3').\

...			any(axis=1)

>>>

>>>	nls97.loc[[100292,100583,100139],

['baenrollment']].T

personid						100292		100583		100139

baenrollment				True				True			False

>>>	nls97.baenrollment.value_counts()

False				5085

True					3899

Name:	baenrollment,	dtype:	int64
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6.	 Create	a	function	that	assigns	a	value	based	on	the	value	of	several	series.

The	getsleepdeprivedreason	function	creates	a	variable
that	categorizes	survey	respondents	by	the	possible	reasons	why	they	might
get	fewer	than	6	hours	of	sleep	a	night.	We	base	this	on	NLS	survey	responses
about	a	respondent's	employment	status,	the	number	of	children	who	live	with
the	respondent,	wage	income,	and	highest	grade	completed:

>>>	def	getsleepdeprivedreason(row):

...			sleepdeprivedreason	=	"Unknown"

...			if	(row.nightlyhrssleep>=6):

...					sleepdeprivedreason	=	"Not

Sleep	Deprived"

...			elif	(row.nightlyhrssleep>0):

...					if

(row.weeksworked16+row.weeksworked17

<	80):

...							if	(row.childathome>2):

...									sleepdeprivedreason	=

"Child	Rearing"

...							else:

...									sleepdeprivedreason	=

"Other	Reasons"

...					else:

...							if	(row.wageincome>=62000

or
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row.highestgradecompleted>=16):

...									sleepdeprivedreason	=

"Work	Pressure"

...							else:

...									sleepdeprivedreason	=

"Income	Pressure"

...			else:

...					sleepdeprivedreason	=

"Unknown"

...			return	sleepdeprivedreason

...

7.	 Use	apply	to	run	the	function	for	all	rows:

>>>	nls97['sleepdeprivedreason']	=

nls97.apply(getsleepdeprivedreason,

axis=1)

>>>	nls97.sleepdeprivedreason	=

nls97.sleepdeprivedreason.astype('category')

>>>

nls97.sleepdeprivedreason.value_counts()

Not	Sleep	Deprived				5595

Unknown															2286

Income	Pressure								462

Work	Pressure										281

Other	Reasons										272
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Child	Rearing											88

Name:	sleepdeprivedreason,	dtype:

int64

The	preceding	steps	demonstrate	several	techniques	we	can	use	to	set	the	values
for	a	series	conditionally.

How	it	works…
If	you	have	used	if-then-else	statements	in	SQL	or	Microsoft

Excel,	then	NumPy's	where	should	be	familiar	to	you.	It	follows	the	form	of

where	(test	condition,	clause	if	True,	clause	if	False).	In	step	2,	we
tested	whether	the	value	of	elevation	for	each	row	is	greater	than	the	value	at	the

80th	percentile.	If	True,	we	return	'High'.	We	return	'Low'
otherwise.	This	is	a	basic	if-then-else	construction.

Sometimes,	we	need	to	nest	a	test	within	a	test.	We	did	this	in	step	3	to	create
three	elevation	groups;	high,	medium,	and	low.	Instead	of	a	simple	statement	in

the	False	section	(after	the	second	comma),	we	used	another	where

statement.	This	changes	it	from	an	else	clause	to	an	else	if	clause.	It

takes	the	form	of	where(test	condition,	statement	if	True,	where(test

condition,	statement	if	True,	statement	if	False)).

It	is	possible	to	add	many	more	nested	where	statements,	though	that	is	not
advisable.	When	we	need	to	evaluate	a	slightly	more	complicated	test,	NumPy's

select	method	comes	in	handy.	In	step	4,	we	passed	a	list	of	tests,	as	well

as	a	list	of	results	of	that	test,	to	select.	We	also	provided	a	default	value
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of	"4.	Did	Okay"	for	any	case	where	none	of	the	tests	was	True.

When	multiple	tests	are	True,	the	first	one	that	is	True	is	used.

Once	the	logic	becomes	even	more	complicated,	we	can	use	apply.	The

DataFrame	apply	method	can	be	used	to	send	each	row	of	a	DataFrame	to	a

function	by	specifying	axis=1.	In	step	5,	we	used	apply	to	call	a

lambda	function	that	tests	whether	the	first	character	of	each	college

enrollment	value	is	3.	But	first,	we	used	the	filter	DataFrame	method	to
select	all	the	college	enrollment	columns.	We	explored	how	to	select	columns
from	a	DataFrame	in	Chapter	3,	Taking	the	Measure	of	Your	Data.

In	steps	6	and	7,	we	created	a	series	that	categorizes	reasons	for	being	sleep
deprived	based	on	weeks	worked,	the	number	of	children	living	with	the
respondent,	wage	income,	and	highest	grade	completed.	If	the	respondent	did	not
work	most	of	2016	and	2017,	and	if	more	than	two	children	lived	with	them,

sleepdeprivedreason	is	set	to	"Child	Rearing".	If
the	respondent	did	not	work	most	of	2016	and	2017	and	two	or	fewer	children

lived	with	them,	sleepdeprivedreason	is	set	to	"Other

Reasons".	If	they	worked	most	of	2016	and	2017,	then

sleepdeprivedreason	is	"Work	Pressure"	if	she

had	either	a	high	salary	or	completed	4	years	of	college,	and	is	"Income

Pressure"	otherwise.	Of	course,	these	categories	are	somewhat
contrived,	but	they	do	illustrate	how	to	use	a	function	to	create	a	series	based	on
complicated	relationships	between	other	series.

You	may	have	noticed	that	we	changed	the	data	type	of	the	new	series	we

created	to	category.	The	new	series	was	an	object	data	type

initially.	We	reduced	memory	usage	by	changing	the	type	to	category.
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We	used	another	incredibly	useful	method	in	step	2,	somewhat	incidentally.

landtemps.groupby(['elevation_group'])

creates	a	DataFrame	groupby	object	that	we	pass	to	an	aggregate	(agg)
function.	This	gives	us	a	count,	min,	and	max	for	each

elevation_group,	allowing	us	to	confirm	that	our	group
classification	works	as	expected.

There's	more…
It	has	been	a	long	time	since	I	have	had	a	data	cleaning	project	that	did	not

involve	a	NumPy	where	or	select	statement,	nor	a	lambda	or

apply	statement.	At	some	point,	we	need	to	create	or	update	a	series	based
on	values	from	one	or	more	other	series.	It	is	a	good	idea	to	get	comfortable	with
these	techniques.

Whenever	there	is	a	built-in	pandas	function	that	does	what	we	need,	it	is	better

to	use	that	than	apply.	The	great	advantage	of	apply	is	that	it	is	quite
generic	and	flexible,	but	that	is	also	why	it	is	more	resource-intensive	than	the
optimized	functions.	However,	it	is	a	great	tool	when	we	want	to	create	a	series
based	on	complicated	relationships	between	existing	series.

Another	way	to	perform	steps	6	and	7	is	to	add	a	lambda	function	to

apply.	This	produces	the	same	results:

>>>	def

getsleepdeprivedreason(childathome,

nightlyhrssleep,	wageincome,

Telegram Channel @nettrain



weeksworked16,	weeksworked17,

highestgradecompleted):

...			sleepdeprivedreason	=	"Unknown"

...			if	(nightlyhrssleep>=6):

...					sleepdeprivedreason	=	"Not

Sleep	Deprived"

...			elif	(nightlyhrssleep>0):

...					if

(weeksworked16+weeksworked17	<

80):

...							if	(childathome>2):

...									sleepdeprivedreason	=

"Child	Rearing"

...							else:

...									sleepdeprivedreason	=

"Other	Reasons"

...					else:

...							if	(wageincome>=62000	or

highestgradecompleted>=16):

...									sleepdeprivedreason	=

"Work	Pressure"

...							else:

...									sleepdeprivedreason	=

"Income	Pressure"
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...			else:

...					sleepdeprivedreason	=

"Unknown"

...			return	sleepdeprivedreason

...

>>>	nls97['sleepdeprivedreason']	=

nls97.apply(lambda	x:

getsleepdeprivedreason(x.childathome,

x.nightlyhrssleep,	x.wageincome,

x.weeksworked16,

x.weeksworked17,

x.highestgradecompleted),

axis=1)

See	also
We'll	go	over	DataFrame	groupby	objects	in	detail	in	Chapter	7,	Fixing
Messy	Data	when	Aggregating.	We	examined	various	techniques	we	can	use	to

select	columns	from	a	DataFrame,	including	filter,	in	Chapter	3,	Taking
the	Measure	of	Your	Data.

Evaluat ing	and	cleaning	s t r ing
ser ies 	data
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There	are	many	string	cleaning	methods	in	Python	and	pandas.	This	is	a	good
thing.	Given	the	great	variety	of	data	stored	in	strings,	it	is	important	to	have	a
wide	range	of	tools	to	call	upon	when	performing	string	evaluation	and
manipulation:	when	selecting	fragments	of	a	string	by	position,	when	checking
whether	a	string	contains	a	pattern,	when	splitting	a	string,	when	testing	a
string's	length,	when	joining	two	or	more	strings,	when	changing	the	case	of	a
string,	and	so	on.	We'll	explore	some	of	the	methods	that	are	used	most
frequently	for	string	evaluation	and	cleaning	in	this	recipe.

Getting	ready
We	will	work	with	the	National	Longitudinal	Survey	data	in	this	recipe.	(The
NLS	data	was	actually	a	little	too	clean	for	this	recipe.	To	illustrate	working	with
strings	with	trailing	spaces,	I	added	trailing	spaces	to	the

maritalstatus	column	values.)

How	to	do	it...
In	this	recipe,	we	will	perform	some	common	string	evaluation	and	cleaning

tasks.	We'll	use	contains,	endswith,	and	findall	to	search
for	patterns,	trailing	blanks,	and	more	complicated	patterns,	respectively.	We	will
also	create	a	function	for	processing	string	values	before	assigning	values	to	a

new	series	and	then	use	replace	for	simpler	processing.	Let's	get	started:

1.	 Import	pandas	and	numpy,	and	then	load	the	NLS	data:

>>>	import	pandas	as	pd

>>>	import	numpy	as	np
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>>>	nls97	=

pd.read_csv("data/nls97c.csv")

>>>	nls97.set_index("personid",

inplace=True)

2.	 Test	whether	a	pattern	exists	in	a	string.

Use	contains	to	examine	the	govprovidejobs	(whether
the	government	should	provide	jobs)	responses	for	the	"Definitely	not"	and

"Probably	not"	values.	In	the	where	call,	handle	missing	values	first	to

make	sure	that	they	do	not	end	up	in	the	first	else	clause	(the	section	after
the	second	comma):

>>>

nls97.govprovidejobs.value_counts()

2.	Probably										617

3.	Probably	not						462

1.	Definitely								454

4.	Definitely	not				300

Name:	govprovidejobs,	dtype:	int64

>>>	nls97['govprovidejobsdefprob']	=

np.where(nls97.govprovidejobs.isnull(),

...			np.nan,np.where(nls97.govprovidejobs.str.contains("not"),"No","Yes"))

>>>	pd.crosstab(nls97.govprovidejobs,

nls97.govprovidejobsdefprob)

govprovidejobsdefprob			No		Yes

govprovidejobs																	
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1.	Definitely												0		454

2.	Probably														0		617

3.	Probably	not								462				0

4.	Definitely	not						300				0

3.	 Handle	leading	or	trailing	spaces	in	a	string.

Create	an	ever-married	series.	First,	examine	the	values	of

maritalstatus.	Notice	that	there	are	two	stray	values,	indicating

married.	Those	two	are	"Married	"	with	an	extra	space	at	the	end,

unlike	the	other	values	of	"Married"	with	no	trailing	spaces.	Use

startswith	and	endswith	to	test	for	a	leading	or	trailing

space,	respectively.	Use	strip	to	remove	the	trailing	space	before	testing

for	ever-married.	strip	removes	leading	and	trailing	spaces	(lstrip

removes	leading	spaces,	while	rstrip	removes	trailing	spaces,	so

rstrip	would	have	also	worked	in	this	example):

>>>

nls97.maritalstatus.value_counts()

Married										3064

Never-married				2766

Divorced										663

Separated									154

Widowed												23

Married													2

Name:	maritalstatus,	dtype:	int64

>>>
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nls97.maritalstatus.str.startswith('

').any()

False

>>>

nls97.maritalstatus.str.endswith('

').any()

True

>>>	nls97['evermarried']	=

np.where(nls97.maritalstatus.isnull(),np.nan,np.where(nls97.maritalstatus.str.strip()=="Never-

married","No","Yes"))

>>>	pd.crosstab(nls97.maritalstatus,

nls97.evermarried)

evermarried						No			Yes

maritalstatus												

Divorced										0			663

Married											0		3064

Married											0					2

Never-married		2766					0

Separated									0			154

Widowed											0				23

4.	 Use	isin	to	compare	a	string	value	to	a	list	of	values:

>>>	nls97['receivedba']	=

np.where(nls97.highestdegree.isnull(),np.nan,np.where(nls97.highestdegree.str[0:1].isin(['4','5','6','7']),"Yes","No"))
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>>>	pd.crosstab(nls97.highestdegree,

nls97.receivedba)

receivedba									No			Yes

highestdegree														

0.	None											953					0

1.	GED											1146					0

2.	High	School			3667					0

3.	Associates					737					0

4.	Bachelors								0		1673

5.	Masters										0			603

6.	PhD														0				54

7.	Professional					0			120

5.	 Use	findall	to	extract	numeric	values	from	a	text	string.

Use	findall	to	create	a	list	of	all	numbers	in	the

weeklyhrstv	(hours	spent	each	week	watching	television)	string.

The	"\d+"	regular	expression	that's	passed	to	findall	indicates
that	we	just	want	numbers:

>>>

pd.concat([nls97.weeklyhrstv.head(),\

...			nls97.weeklyhrstv.str.findall("\d+").head()],

axis=1)

																				weeklyhrstv

weeklyhrstv
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personid																																			

100061				11	to	20	hours	a

week				[11,	20]

100139					3	to	10	hours	a

week					[3,	10]

100284				11	to	20	hours	a

week				[11,	20]

100292																						NaN									NaN

100583					3	to	10	hours	a

week					[3,	10]

6.	 Use	the	list	created	by	findall	to	create	a	numeric	series	from	the

weeklyhrstv	text.

First,	define	a	function	that	retrieves	the	last	element	in	the	list	created	by

findall	for	each	value	of	weeklyhrstv.	The	getnum
function	also	adjusts	that	number	so	that	it's	closer	to	the	midpoint	of	the	two

numbers,	where	there	is	more	than	one	number.	We	then	use	apply	to	call

this	function,	passing	it	the	list	created	by	findall	for	each	value.

crosstab	shows	that	the	new	weeklyhrstvnum	column
does	what	we	want	it	to	do:

>>>	def	getnum(numlist):

...			highval	=	0

...			if	(type(numlist)	is	list):

...					lastval	=	int(numlist[-1])

...					if	(numlist[0]=='40'):
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...							highval	=	45

...					elif	(lastval==2):

...							highval	=	1

...					else:

...							highval	=	lastval	-	5

...			else:

...					highval	=	np.nan

...			return	highval

...

>>>	nls97['weeklyhrstvnum']	=

nls97.weeklyhrstv.str.\

...			findall("\d+").apply(getnum)

>>>

>>>	pd.crosstab(nls97.weeklyhrstv,

nls97.weeklyhrstvnum)

weeklyhrstvnum														1.00			5.00			15.00		25.00		35.00		45.00

weeklyhrstv																																																									

11	to	20	hours	a

week											0						0			1145						0						0						0

21	to	30	hours	a

week											0						0						0				299						0						0

3	to	10	hours	a

week												0			3625						0						0						0						0

31	to	40	hours	a
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week											0						0						0						0				116						0

Less	than	2	hours	per

week			1350						0						0						0						0						0

More	than	40	hours	a

week							0						0						0						0						0				176

7.	 Replace	the	values	in	a	series	with	alternative	values.

The	weeklyhrscomputer	(hours	spent	each	week	on	a
computer)	series	does	not	sort	nicely	with	its	current	values.	We	can	fix	this
by	replacing	the	values	with	letters	that	indicate	order.	We'll	start	by	creating	a
list	containing	the	old	values	and	another	list	containing	the	new	values	that

we	want.	We	then	use	the	series	replace	method	to	replace	the	old

values	with	the	new	values.	Whenever	replace	finds	a	value	from	the
old	values	list,	it	replaces	it	with	a	value	from	the	same	list	position	in	the	new
list:

>>>	comphrsold	=	['None','Less	than	1

hour	a	week',

...			'1	to	3	hours	a	week','4	to	6

hours	a	week',

...			'7	to	9	hours	a	week','10	hours

or	more	a	week']

>>>

>>>	comphrsnew	=	['A.	None','B.	Less

than	1	hour	a	week',

...			'C.	1	to	3	hours	a	week','D.	4

to	6	hours	a	week',
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...			'E.	7	to	9	hours	a	week','F.	10

hours	or	more	a	week']

>>>

>>>

nls97.weeklyhrscomputer.value_counts().sort_index()

1	to	3	hours	a	week									733

10	hours	or	more	a	week				3669

4	to	6	hours	a	week									726

7	to	9	hours	a	week									368

Less	than	1	hour	a	week					296

None																								918

Name:	weeklyhrscomputer,	dtype:	int64

>>>

nls97.weeklyhrscomputer.replace(comphrsold,

comphrsnew,	inplace=True)

>>>

nls97.weeklyhrscomputer.value_counts().sort_index()

A.	None																								918

B.	Less	than	1	hour	a	week					296

C.	1	to	3	hours	a	week									733

D.	4	to	6	hours	a	week									726

E.	7	to	9	hours	a	week									368

F.	10	hours	or	more	a	week				3669
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Name:	weeklyhrscomputer,	dtype:	int64

The	steps	in	this	recipe	demonstrate	some	of	the	common	string	evaluation	and
manipulation	tasks	we	can	perform	in	pandas.

How	it	works...
We	frequently	need	to	examine	a	string	to	see	whether	a	pattern	is	there.	We	can

use	the	string	contains	method	to	do	this.	If	we	know	exactly	where	the
expected	pattern	will	be,	we	can	use	standard	slice	notation,

[start:stop:step],	to	select	text	from	start	through	stop-1.	(The

default	value	for	step	is	1.)	For	example,	in	step	4,	we	got	the	first	character

from	highestdegree	with

nls97.highestdegree.str[0:1].	We	then	used

isin	to	test	whether	the	first	string	appears	in	a	list	of	values.	(isin
works	for	both	character	and	numeric	data.)

Sometimes,	we	need	to	pull	multiple	values	from	a	string	that	satisfy	a	condition.

findall	is	helpful	in	those	situations	as	it	returns	a	list	of	all	values
satisfying	the	condition.	It	can	be	paired	with	a	regular	expression	when	we	are
looking	for	something	more	general	than	a	literal.	In	steps	5	and	6,	we	were
looking	for	any	number.

There's	more…
It	is	important	to	be	deliberate	when	we're	handling	missing	values	when
creating	a	series	based	on	values	for	another	series.	Missing	values	may	satisfy
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the	else	condition	in	a	where	call	when	that	is	not	our	intention.	In	steps
2,	3,	and	4,	we	made	sure	that	we	handled	the	missing	values	appropriately	by

testing	for	them	at	the	beginning	of	the	where	call.

We	also	need	to	be	careful	about	case	when	making	string	comparisons.	For
example,	"Probably"	and	"probably"	are	not	equal.	One	way	to	get	around	this	is

to	use	the	upper	or	lower	methods	when	doing	comparisons	when	a
potential	difference	in	case	is	not	meaningful.

upper("Probably")	==	upper("PROBABLY")

is	actually	True.

Working	with	dates
Working	with	dates	is	rarely	straightforward.	Data	analysts	need	to	successfully
parse	date	values,	identify	invalid	or	out-of-range	dates,	impute	dates	when
they're	missing,	and	calculate	time	intervals.	There	are	surprising	hurdles	at	each
of	these	steps,	but	we	are	halfway	there	once	we've	parsed	the	date	value	and
have	a	datetime	value	in	pandas.	We	will	start	by	parsing	date	values	in	this
recipe	before	working	our	way	through	the	other	challenges.

Getting	ready
We	will	work	with	the	National	Longitudinal	Survey	and	COVID	case	daily	data
in	this	recipe.	The	COVID	daily	data	contains	one	row	for	each	reporting	day	for
each	country.	(The	NLS	data	was	actually	a	little	too	clean	for	this	purpose.	To
illustrate	working	with	missing	date	values,	I	set	one	of	the	values	for	birth
month	to	missing.)
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DATA	NOTE
Our	World	in	Data	provides	COVID-19	public	use	data	at
https://ourworldindata.org/coronavirus-source-data.	The	data	that	will	be	used
in	this	recipe	was	downloaded	on	July	18,	2020.

How	to	do	it…
In	this	recipe,	we	will	convert	numeric	data	into	datetime	data,	first	by

confirming	that	the	data	has	valid	date	values	and	then	by	using	fillna	to
replace	missing	dates.	We	will	then	calculate	some	date	intervals;	that	is,	the	age
of	respondents	for	the	NLS	data	and	the	days	since	the	first	COVID	case	for	the
COVID	daily	data.	Let's	get	started:

1.	 Import	pandas,	numpy,	and	the	datetime	module,	and	then
load	the	NLS	and	COVID	case	daily	data:

>>>	import	pandas	as	pd

>>>	import	numpy	as	np

>>>	from	datetime	import	datetime

>>>	covidcases	=

pd.read_csv("data/covidcases720.csv")

>>>	nls97	=

pd.read_csv("data/nls97c.csv")

>>>	nls97.set_index("personid",

inplace=True)

2.	 Show	the	birth	month	and	year	values.
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Notice	that	there	is	one	missing	value	for	birth	month.	Other	than	that,	the

data	that	we	will	use	to	create	the	birthdate	series	look	pretty	clean:

>>>

nls97[['birthmonth','birthyear']].isnull().sum()

birthmonth				1

birthyear					0

dtype:	int64

>>>

nls97.birthmonth.value_counts().sort_index()

1					815

2					693

3					760

4					659

5					689

6					720

7					762

8					782

9					839

10				765

11				763

12				736

Name:	birthmonth,	dtype:	int64
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>>>

nls97.birthyear.value_counts().sort_index()

1980				1691

1981				1874

1982				1841

1983				1807

1984				1771

Name:	birthyear,	dtype:	int64

3.	 Use	the	series	fillna	method	to	set	a	value	for	the	missing	birth	month.

Pass	the	average	of	birthmonth,	rounded	to	the	nearest	integer,	to

fillna.	This	will	replace	the	missing	value	for	birthmonth

with	the	mean	of	birthmonth.	Notice	that	one	more	person	now	has	a

value	of	6	for	birthmonth:

>>>

nls97.birthmonth.fillna(int(nls97.birthmonth.mean()),

inplace=True)

>>>

nls97.birthmonth.value_counts().sort_index()

1					815

2					693

3					760

4					659

5					689
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6					721

7					762

8					782

9					839

10				765

11				763

12				736

4.	 Use	month	and	date	integers	to	create	a	datetime	column.

We	can	pass	a	dictionary	to	the	pandas	to_datetime	function.	The
dictionary	needs	to	contain	a	key	for	year,	month,	and	day.	Notice	that	there

are	no	missing	values	for	birthmonth,	birthyear,	and

birthdate:

>>>	nls97['birthdate']	=

pd.to_datetime(dict(year=nls97.birthyear,

month=nls97.birthmonth,

day=15))

>>>

nls97[['birthmonth','birthyear','birthdate']].head()

										birthmonth		birthyear		birthdate

personid																																		

100061													5							1980	1980-

05-15

100139													9							1983	1983-

09-15
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100284												11							1984	1984-

11-15

100292													4							1982	1982-

04-15

100583													6							1980	1980-

06-15

>>>

nls97[['birthmonth','birthyear','birthdate']].isnull().sum()

birthmonth				0

birthyear					0

birthdate					0

dtype:	int64

5.	 Calculate	age	values	using	a	datetime	column.

First,	define	a	function	that	will	calculate	age	values	when	given	a	start	date
and	an	end	date:

>>>	def	calcage(startdate,	enddate):

...			age	=	enddate.year	-

startdate.year

...			if

(enddate.month<startdate.month

or

(enddate.month==startdate.month

and

enddate.day<startdate.day)):
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...					age	=	age	-1

...			return	age

...

>>>	rundate	=	pd.to_datetime('2020-

07-20')

>>>	nls97["age"]	=	nls97.apply(lambda

x:	calcage(x.birthdate,

rundate),	axis=1)

>>>	nls97.loc[100061:100583,

['age','birthdate']]

										age		birthdate

personid																

100061					40	1980-05-15

100139					36	1983-09-15

100284					35	1984-11-15

100292					38	1982-04-15

100583					40	1980-06-15

6.	 Convert	a	string	column	into	a	datetime	column.

The	casedate	column	is	an	object	data	type,	not	a

datetime	data	type:

>>>	covidcases.iloc[:,	0:6].dtypes

iso_code								object

continent							object

Telegram Channel @nettrain



location								object

casedate								object

total_cases				float64

new_cases						float64

dtype:	object

>>>	covidcases.iloc[:,	0:6].sample(2,

random_state=1).T

																			13482										2445

iso_code													IMN												BRB

continent									Europe		North

America

location					Isle	of

Man							Barbados

casedate						2020-06-20					2020-04-

28

total_cases										336													80

new_cases														0														1

>>>	covidcases['casedate']	=

pd.to_datetime(covidcases.casedate,

format='%Y-%m-%d')

>>>	covidcases.iloc[:,	0:6].dtypes

iso_code															object

continent														object

location															object
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casedate							datetime64[ns]

total_cases											float64

new_cases													float64

dtype:	object

7.	 Show	descriptive	statistics	on	the	datetime	column:

>>>	covidcases.casedate.describe()

count																			29529

unique																				195

top							2020-05-23	00:00:00

freq																						209

first					2019-12-31	00:00:00

last						2020-07-12	00:00:00

Name:	casedate,	dtype:	object

8.	 Create	a	timedelta	object	to	capture	a	date	interval.

For	each	day,	calculate	the	number	of	days	since	the	first	case	was	reported	for
each	country.	First,	create	a	DataFrame	that	shows	the	first	day	of	new	cases
for	each	country	and	then	merge	it	with	the	full	COVID	cases	data.	Then,	for

each	day,	calculate	the	number	of	days	from	firstcasedate	to

casedate.	Notice	that	one	country	started	reporting	data	62	days
before	its	first	case:

>>>	firstcase	=

covidcases.loc[covidcases.new_cases>0,

['location','casedate']].\
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...			sort_values(['location','casedate']).\

...			drop_duplicates(['location'],

keep='first').\

...			rename(columns=

{'casedate':'firstcasedate'})

>>>

>>>	covidcases	=	pd.merge(covidcases,

firstcase,	left_on=

['location'],	right_on=

['location'],	how="left")

>>>	covidcases['dayssincefirstcase']

=	covidcases.casedate	-

covidcases.firstcasedate

>>>

covidcases.dayssincefirstcase.describe()

count																						29529

mean					56	days	00:15:12.892410

std						47	days	00:35:41.813685

min											-62	days	+00:00:00

25%													21	days	00:00:00

50%													57	days	00:00:00

75%													92	days	00:00:00

max												194	days	00:00:00
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Name:	dayssincefirstcase,	dtype:

object

This	recipe	showed	how	it's	possible	to	parse	date	values	and	create	a	datetime
series,	as	well	as	how	to	calculate	time	intervals.

How	it	works…
The	first	task	when	working	with	dates	in	pandas	is	converting	them	properly
into	a	pandas	datetime	series.	We	tackled	a	couple	of	the	most	common	issues	in
steps	3,	4,	and	6:	missing	values,	date	conversion	from	integer	parts,	and	date

conversion	from	strings.	birthmonth	and	birthyear	are
integers	in	the	NLS	data.	We	confirmed	that	those	values	are	valid	values	for
dates	of	months	and	years.	If,	for	example,	there	were	month	values	of	0	or	20,
the	conversion	to	pandas	datetime	would	fail.

Missing	values	for	birthmonth	or	birthyear	will	just	result	in

a	missing	birthdate.	We	used	fillna	for	the	missing	value	for

birthmonth,	assigning	it	to	the	mean	value	of	birthmonth.	In
step	5,	we	calculated	an	age	for	each	person	as	of	July	20,	2020	using	the	new

birthdate	column.	The	calcage	function	that	we	created	adjusts
for	individuals	whose	birth	dates	come	later	in	the	year	than	July	20.

Data	analysts	often	receive	data	files	containing	date	values	as	strings.	The

to_datetime	function	is	the	analyst's	key	ally	when	this	happens.	It	is
often	smart	enough	to	figure	out	the	format	of	the	string	date	data	without	us
having	to	specify	a	format	explicitly.	However,	in	step	6,	we	told

to_datetime	to	use	the	"%Y-%m-%d"	format	with	our	data.
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Step	7	told	us	that	there	were	195	unique	days	where	COVID	cases	were
reported	and	that	the	most	frequent	day	is	May	23.	The	first	reported	day	is	Dec
31,	2019	and	the	last	is	July	12,	2020.	This	is	what	we	expected.

The	first	two	statements	in	step	8	involved	techniques	(sorting	and	dropping
duplicates)	that	we	will	not	explore	in	detail	until	Chapter	7,	Fixing	Messy	Data
when	Aggregating,	and	Chapter	8,	Addressing	Data	Issues	when	Combining
DataFrames.	All	you	need	to	understand	here	is	the	objective:	creating	a

DataFrame	with	one	row	per	location	(country),	and	with	the	date	of	the
first	reported	COVID	case.	We	did	this	by	only	selecting	rows	from	the	full	data

where	new_cases	is	greater	than	0,	before	sorting	that	by

location	and	casedate	and	keeping	the	first	row	for	each

location.	We	then	changed	the	name	of	casedate	to

firstcasedate	before	merging	the	new	firstcase
DataFrame	with	the	COVID	daily	cases	data.

Since	both	casedate	and	firstcasedate	are	datetime
columns,	subtracting	the	latter	from	the	former	will	result	in	a

timedelta	value.	This	gives	us	a	series	that	is	the	number	of	days	before

or	after	the	first	day	of	new_cases	for	each	reporting	day.	So,	if	a
country	started	reporting	on	COVID	cases	3	weeks	before	its	first	new	case,	it

would	have	-21	days	for	the	value	of	dayssincefirstcase	for
that	first	day.	This	is	useful	if	we	want	to	track	trends	by	how	long	the	virus	has
been	obviously	present	in	a	country,	rather	than	by	date.

See	also
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Instead	of	using	sort_values	and	drop_duplicates	in

step	8,	we	could	have	used	groupby	to	achieve	similar	results.	We'll

explore	groupby	a	fair	bit	in	the	next	Chapter	7,	Fixing	Messy	Data	when
Aggregating.	This	is	the	first	time	we	have	done	a	merge	in	this	book,	but	it	is
far	from	the	last	time	we	will	be	combining	DataFrames.	Chapter	8,	Addressing
Data	Issues	when	Combining	DataFrames,	will	be	devoted	to	this	topic.	We'll
explore	more	strategies	for	handling	missing	data	in	the	next	two	recipes.

Ident i fying	and	cleaning
missing	data
We	have	already	explored	some	strategies	for	identifying	and	cleaning	missing
values,	particularly	in	Chapter	1,	Anticipating	Data	Cleaning	Issues	when
Importing	Tabular	Data	into	pandas.	We	will	polish	up	on	those	skills	in	this
recipe.	We	will	do	this	by	exploring	a	full	range	of	strategies	for	handling
missing	data,	including	using	DataFrame	means	and	group	means,	as	well	as
forward	filling	with	nearby	values.	In	the	next	recipe,	we	impute	values	using	k-
nearest	neighbor.

Getting	ready
We	will	continue	working	with	the	National	Longitudinal	Survey	data	in	this
recipe.

How	to	do	it…
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In	this	recipe,	we	will	check	key	demographic	and	school	record	columns	for
missing	values.	We'll	then	use	several	strategies	to	impute	values	for	missing
data:	assigning	the	overall	mean	for	that	column,	assigning	a	group	mean,	and
assigning	the	value	of	the	nearest	preceding	non-missing	value.	Let's	get	started:

1.	 Import	pandas	and	load	the	NLS	data:

>>>	import	pandas	as	pd

>>>	nls97	=

pd.read_csv("data/nls97c.csv")

>>>	nls97.set_index("personid",

inplace=True)

2.	 Set	up	school	record	and	demographic	DataFrames	from	the	NLS	data:

>>>	schoolrecordlist	=

['satverbal','satmath','gpaoverall','gpaenglish',

...			'gpamath','gpascience','highestdegree','highestgradecompleted']

>>>	demolist	=

['maritalstatus','childathome','childnotathome',

...			'wageincome','weeklyhrscomputer','weeklyhrstv','nightlyhrssleep']

>>>	schoolrecord	=

nls97[schoolrecordlist]

>>>	demo	=	nls97[demolist]

>>>	schoolrecord.shape

(8984,	8)

>>>	demo.shape

(8984,	7)

Telegram Channel @nettrain



3.	 Check	data	for	missing	values.

Check	the	number	of	missing	values	for	each	column	in	the

schoolrecord	DataFrame.	isnull	returns	a	Boolean	series

with	True	when	values	for	that	column	are	missing,	and	False

otherwise.	When	chained	with	sum,	a	count	of	True	values	is	returned.

By	setting	axis=1,	we	can	check	the	number	of	missing	values	for	each
row.	11	individuals	have	missing	values	for	all	8	columns,	and	946	have
missing	values	for	7	out	of	8	columns.	Upon	taking	a	look	at	the	data	for	a	few

of	these	individuals,	it	looks	like	they	mainly	have	highestdegree
and	no	valid	values	for	other	columns:

>>>	schoolrecord.isnull().sum(axis=0)

satverbal																7578

satmath																		7577

gpaoverall															2980

gpaenglish															3186

gpamath																		3218

gpascience															3300

highestdegree														31

highestgradecompleted				2321

dtype:	int64

>>>	misscnt	=

schoolrecord.isnull().sum(axis=1)

>>>

misscnt.value_counts().sort_index()
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0				1087

1					312

2				3210

3				1102

4					176

5					101

6				2039

7					946

8						11

dtype:	int64

>>>

schoolrecord.loc[misscnt>=7].head(4).T

personid															101705			102061		102648			104627

satverbal																	NaN						NaN					NaN						NaN

satmath																			NaN						NaN					NaN						NaN

gpaoverall																NaN						NaN					NaN						NaN

gpaenglish																NaN						NaN					NaN						NaN

gpamath																			NaN						NaN					NaN						NaN

gpascience																NaN						NaN					NaN						NaN

highestdegree										1.	GED		0.

None		1.	GED		0.	None

highestgradecompleted					NaN						NaN					NaN						NaN

4.	 Remove	rows	where	nearly	all	the	data	is	missing.
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Here,	we	use	the	dropna	DataFrame	method	with	thresh	set	to	2.
This	removes	rows	with	less	than	two	non-missing	values	(those	with	seven	or
eight	missing	values):

>>>	schoolrecord	=

schoolrecord.dropna(thresh=2)

>>>	schoolrecord.shape

(8027,	8)

>>>

schoolrecord.isnull().sum(axis=1).value_counts().sort_index()

0				1087

1					312

2				3210

3				1102

4					176

5					101

6				2039

dtype:	int64

5.	 Assign	the	mean	of	the	GPA	values	where	it's	missing:

>>>

int(schoolrecord.gpaoverall.mean())

2

>>>

schoolrecord.gpaoverall.isnull().sum()

2023
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>>>

schoolrecord.gpaoverall.fillna(int(schoolrecord.gpaoverall.mean()),

inplace=True)

>>>

schoolrecord.gpaoverall.isnull().sum()

0

6.	 Use	forward	fill	to	replace	missing	values.

Use	the	ffill	option	with	fillna	to	replace	missing	values	with	the
nearest	non-missing	value	preceding	it	in	the	data:

>>>	demo.wageincome.head().T

personid

100061				12,500

100139			120,000

100284				58,000

100292							nan

100583				30,000

Name:	wageincome,	dtype:	float64

>>>	demo.wageincome.isnull().sum()

3893

>>>

nls97.wageincome.fillna(method='ffill',

inplace=True)

>>>	demo	=	nls97[demolist]

Telegram Channel @nettrain



>>>	demo.wageincome.head().T

personid

100061				12,500

100139			120,000

100284				58,000

100292				58,000

100583				30,000

Name:	wageincome,	dtype:	float64

>>>	demo.wageincome.isnull().sum()

0

7.	 Fill	missing	values	with	the	mean	by	group.

Create	a	DataFrame	containing	the	average	value	of	weeks	worked	in	2017	by
the	highest	degree	they've	earned.	Merge	that	with	the	NLS	data,	then	use

fillna	to	replace	the	missing	values	for	weeks	worked	with	the	mean
for	that	individual's	highest	degree	earned	group:

>>>

nls97[['highestdegree','weeksworked17']].head()

											highestdegree		weeksworked17

personid																															

100061				2.	High

School													48

100139				2.	High

School													52
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100284											0.

None														0

100292						4.

Bachelors												nan

100583				2.	High

School													52

>>>

>>>	workbydegree	=

nls97.groupby(['highestdegree'])

['weeksworked17'].mean().\

...			reset_index().rename(columns=

{'weeksworked17':'meanweeksworked17'})

>>>

>>>	nls97	=	nls97.reset_index().\

...			merge(workbydegree,	left_on=

['highestdegree'],	right_on=

['highestdegree'],

how='left').set_index('personid')

>>>

>>>

nls97.weeksworked17.fillna(nls97.meanweeksworked17,

inplace=True)

>>>

nls97[['highestdegree','weeksworked17','meanweeksworked17']].head()

											highestdegree		weeksworked17		meanweeksworked17
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personid																																																		

100061				2.	High

School													48																	38

100139				2.	High

School													52																	38

100284											0.

None														0																	29

100292						4.

Bachelors													44																	44

100583				2.	High

School													52																	38

The	preceding	steps	demonstrated	several	different	approaches	we	can	use	to
replace	missing	series	values.

How	it	works…
By	shifting	the	axis	when	using	isnull,	we	can	check	for	missing	values
column-wise	or	row-wise.	In	the	latter	case,	rows	with	almost	all	missing	data
are	good	candidates	for	removal.	In	the	former	case,	where	there	are	particular
columns	that	have	missing	values	but	also	a	fair	bit	of	good	data,	we	can	think
about	imputation	strategies.

The	very	useful	grouby	DataFrame	method	is	used	once	more	in	this
recipe.	By	using	it	in	step	7	to	create	a	DataFrame	with	a	summary	statistic	by
group	(in	this	case,	the	group	mean	for	weeks	worked),	we	can	use	those	values
to	improve	our	data	cleaning	work.	This	merge	is	a	little	more	complicated
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because,	usually,	we	would	lose	the	index	with	this	kind	of	merge	(we	are	not
merging	by	the	index).	We	reset	the	index	and	then	set	it	again	so	that	it	is	still
available	to	us	in	the	subsequent	statements	in	that	step.

There's	more...
We	explored	several	imputation	strategies	in	this	recipe,	such	as	setting	missing
values	to	the	overall	mean,	setting	them	to	the	mean	for	a	particular	group,	and
forward	filling	values.	Which	one	is	appropriate	for	a	given	data	cleaning	task	is,
of	course,	determined	by	your	data.

Forward	filling	makes	the	most	sense	with	time	series	data,	with	the	assumption
being	that	the	missing	value	is	most	likely	to	be	near	the	value	of	the
immediately	preceding	time	period.	But	forward	filling	may	also	make	sense
when	missing	values	are	rare	and	spread	somewhat	randomly	throughout	the
data.	When	you	have	reason	to	believe	that	the	data	values	for	rows	near	each
other	have	more	in	common	with	each	other	than	they	do	with	the	overall	mean,
forward	filling	might	be	a	better	choice	than	the	mean.	For	this	same	reason,	a
group	mean	might	be	a	better	option	than	both,	assuming	that	the	variable	of
interest	varies	significantly	with	group	membership.

See	also
This	discussion	leads	us	to	another	missing	value	imputation	strategy:	using
machine	learning	techniques	such	as	k-nearest	neighbor	(KNN).	The	next
recipe	demonstrates	the	use	of	KNN	to	clean	missing	data.
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Missing	value	 imputat ion	with
K-nearest 	neighbor
KNN	is	a	popular	machine	learning	technique	because	it	is	intuitive	and	easy	to
run	and	yields	good	results	when	there	is	not	a	large	number	of	features
(variables)	and	observations.	For	the	same	reasons,	it	is	often	used	to	impute
missing	values.	As	its	name	suggests,	KNN	identifies	the	k	observations	whose
features	are	most	similar	to	each	observation.	When	used	to	impute	missing
values,	KNN	uses	the	nearest	neighbors	to	determine	what	fill	values	to	use.

Getting	ready
We	will	work	with	the	National	Longitudinal	Survey	data	again	in	this	recipe,
and	then	try	to	impute	reasonable	values	for	the	same	school	record	data	that	we
worked	with	in	the	preceding	recipe.

You	will	need	scikit-learn	to	run	the	code	in	this	recipe.	You	can	install	it	by

entering	pip	install	sklearn	in	a	Terminal	or	Windows
PowerShell.

How	to	do	it…
In	this	recipe,	we	will	use	scikit-learn's	KNNImputer	module	to	fill	in
missing	values	for	key	NLS	school	record	columns.	Let's	get	started:

1.	 Import	pandas	and	scikit-learn's	KNNImputer	module,	and	then
load	the	NLS	data:
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>>>	import	pandas	as	pd

>>>	from	sklearn.impute	import

KNNImputer

>>>	nls97	=

pd.read_csv("data/nls97c.csv")

>>>	nls97.set_index("personid",

inplace=True)

2.	 Select	the	NLS	school	record	data:

>>>	schoolrecordlist	=

['satverbal','satmath','gpaoverall','gpaenglish',

...			'gpamath','gpascience','highestgradecompleted']

>>>	schoolrecord	=

nls97[schoolrecordlist]

3.	 Initialize	a	KNN	imputation	model	and	fill	in	the	values:

>>>	impKNN	=

KNNImputer(n_neighbors=5)

>>>	newvalues	=

impKNN.fit_transform(schoolrecord)

>>>	schoolrecordimp	=

pd.DataFrame(newvalues,

columns=schoolrecordlist,

index=schoolrecord.index)

4.	 View	the	imputed	values:

>>>	schoolrecord.head().T
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personid															100061		100139		100284		100292		100583

satverbal																	nan					nan					nan					nan					nan

satmath																			nan					nan					nan					nan					nan

gpaoverall																3.1					nan					nan					3.5					2.9

gpaenglish														350.0					nan					nan			345.0			283.0

gpamath																	280.0					nan					nan			370.0			285.0

gpascience														315.0					nan					nan			300.0			240.0

highestgradecompleted				13.0				12.0					7.0					nan				13.0

>>>	schoolrecordimp.head().T

personid															100061		100139		100284		100292		100583

satverbal															446.0			412.0			290.8			534.0			414.0

satmath																	460.0			470.0			285.2			560.0			454.0

gpaoverall																3.1					2.3					2.5					3.5					2.9

gpaenglish														350.0			232.4			136.0			345.0			283.0

gpamath																	280.0			218.0			244.6			370.0			285.0

gpascience														315.0			247.8			258.0			300.0			240.0

highestgradecompleted				13.0				12.0					7.0					9.8				13.0

5.	 Compare	the	summary	statistics:

>>>

schoolrecord[['gpaoverall','highestgradecompleted']].agg(['mean','count'])

							gpaoverall		highestgradecompleted

mean										2.8																			14.1

count					6,004.0																6,663.0
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>>>

schoolrecordimp[['gpaoverall','highestgradecompleted']].agg(['mean','count'])

							gpaoverall		highestgradecompleted

mean										2.8																			13.5

count					8,984.0																8,984.0

This	recipe	showed	us	how	to	use	KNN	for	missing	values	imputation.

How	it	works…
Almost	all	the	work	in	this	recipe	was	done	in	step	3,	where	we	initialized	the
KNN	imputer.	The	only	decision	we	need	to	make	here	is	what	value	the	nearest
neighbor	will	have.	We	chose	5	here,	a	reasonable	value	for	a	DataFrame	of	this

size.	Then,	we	passed	the	schoolrecord	DataFrame	to	the

fit_transform	method,	which	returns	an	array	of	new	DataFrame
values.	The	array	retains	the	non-missing	values	but	has	imputed	values	where
they	were	missing.	We	then	loaded	the	array	into	a	new	DataFrame,	using	the
column	names	and	index	from	the	original	DataFrame.

We	got	a	good	look	at	the	new	values	in	steps	4	and	5.	All	of	the	missing	values
have	been	replaced.	There	is	also	little	change	in	the	means	for

gpaoverall	and	highestgradecompleted.

There's	more...
We	are	probably	asking	KNN	to	do	too	much	work	here	since	a	few	rows	of	data
have	very	little	information	we	can	use	for	imputation.	We	should	consider
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dropping	rows	from	the	DataFrame	that	contain	fewer	than	two	or	three	non-
missing	values.

See	also
KNN	is	also	often	used	to	detect	outliers	in	data.	The	Using	k-nearest	neighbor
to	find	outliers	recipe	in	Chapter	4,	Identifying	Missing	Values	and	Outliers	in
Subsets	of	Data,	demonstrates	this.
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Chapter 	7: 	Fixing	Messy	Data
when	Aggregat ing
Earlier	chapters	of	this	book	introduced	techniques	for	generating	summary

statistics	on	a	whole	DataFrame.	We	used	methods	such	as	describe,

mean,	and	quantile	to	do	that.	This	chapter	covers	more	complicated
aggregation	tasks:	aggregating	by	categorical	variables,	and	using	aggregation	to
change	the	structure	of	DataFrames.

After	the	initial	stages	of	data	cleaning,	analysts	spend	a	substantial	amount	of
their	time	doing	what	Hadley	Wickham	has	called	splitting-applying-combining.
That	is,	we	subset	data	by	groups,	apply	some	operation	to	those	subsets,	and
then	draw	conclusions	about	a	dataset	as	a	whole.	In	slightly	more	specific
terms,	this	involves	generating	descriptive	statistics	by	key	categorical	variables.

For	the	nls97	dataset,	this	might	be	gender,	marital	status,	and	highest
degree	received.	For	the	COVID-19	data,	we	might	segment	the	data	by	country
or	date.

Often,	we	need	to	aggregate	data	to	prepare	it	for	subsequent	analysis.
Sometimes,	the	rows	of	a	DataFrame	are	disaggregated	beyond	the	desired	unit
of	analysis,	and	some	aggregation	has	to	be	done	before	analysis	can	begin.	For
example,	our	DataFrame	might	have	bird	sightings	by	species	per	day	over	the
course	of	many	years.	Since	those	values	jump	around,	we	might	decide	to
smooth	that	out	by	working	only	with	the	total	sightings	by	species	per	month,
or	even	per	year.	Another	example	is	households	and	car	repair	expenditures.	We
might	need	to	summarize	those	expenditures	over	a	year.
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There	are	several	ways	to	aggregate	data	using	NumPy	and	pandas,	each	with
particular	strengths.	We	explore	the	most	useful	approaches	in	this	chapter;	from

looping	with	itertuples,	to	navigating	over	NumPy	arrays,	to	several

techniques	using	the	DataFrame	groupby	method.	It	is	helpful	to	have	a
good	understanding	of	the	full	range	of	tools	available	in	pandas	and	NumPy
since:	almost	all	data	analysis	projects	require	some	aggregation;	aggregation	is
among	the	most	consequential	steps	we	take	in	the	data	cleaning	process;	and	the
best	tool	for	the	job	is	determined	more	by	the	attributes	of	the	data	than	by	our
personal	preferences.

Specifically,	the	recipes	in	this	chapter	examine	the	following:

Looping	through	data	with	itertuples	(an	anti-pattern)

Calculating	summaries	by	group	with	NumPy	arrays

Using	groupby	to	organize	data	by	groups

Using	more	complicated	aggregation	functions	with	groupby

Using	user-defined	functions	and	apply	with	groupby

Using	groupby	to	change	the	unit	of	analysis	of	a	DataFrame

Technical 	 requirements
The	code	and	notebooks	for	this	chapter	are	available	on	GitHub	at
https://github.com/PacktPublishing/Python-Data-Cleaning-Cookbook
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Looping	 through	data 	with
i ter tuples 	 (an	ant i -pat tern)
In	this	recipe,	we	will	iterate	over	the	rows	of	a	DataFrame	and	generate	our	own
totals	for	a	variable.	In	subsequent	recipes	in	this	chapter	we	will	use	NumPy
arrays,	and	then	some	pandas-specific	techniques,	for	accomplishing	the	same
tasks.

It	may	seem	odd	to	begin	this	chapter	with	a	technique	that	we	are	often
cautioned	against	using.	But	I	used	to	do	the	equivalent	of	looping	every	day	30
years	ago	in	SAS,	and	on	select	occasions	as	recently	as	7	years	ago	in	R.	That	is
why	I	still	find	myself	thinking	conceptually	about	iterating	over	rows	of	data,
sometimes	sorted	by	groups,	even	though	I	rarely	implement	my	code	in	this
manner.	I	think	it	is	good	to	hold	onto	that	conceptualization,	even	when	using
other	pandas	methods	that	work	for	us	more	efficiently.

I	do	not	want	to	leave	the	impression	that	pandas-specific	techniques	are	always
markedly	more	efficient	either.	pandas	users	probably	find	themselves	using

apply	more	than	they	would	like,	an	approach	that	is	only	somewhat	faster
than	looping.

Finally,	I	should	add	that	if	your	DataFrame	has	fewer	than	10,000	rows	then	the
efficiency	gains	from	using	pandas-specific	techniques,	rather	than	looping,	are
likely	to	be	minimal.	In	that	case,	analysts	should	choose	the	approach	that	is
most	intuitive	and	resistant	to	errors.

Getting	ready
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We	will	work	with	the	COVID-19	case	daily	data	in	this	recipe.	It	has	one	row
per	day	per	country,	each	row	having	the	number	of	new	cases	and	new	deaths
for	that	day.	It	reflects	the	totals	as	of	July	18,	2020.

We	will	also	be	working	with	land	temperature	data	from	87	weather	stations	in
Brazil	in	2019.	Most	weather	stations	had	one	temperature	reading	for	each
month.

DATA	NOTE
Our	World	in	Data	provides	Covid-19	public	use	data	at
https://ourworldindata.org/coronavirus-source-data.

The	land	temperature	data	is	taken	from	the	Global	Historical	Climatology
Network	integrated	database,	which	is	made	available	for	public	use	by	the
United	States	National	Oceanic	and	Atmospheric	Administration	at
https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-
datasets/global-historical-climatology-network-monthly-version-4.	Only	data	for
Brazil	in	2019	is	used	in	this	recipe.

How	to	do	it…
We	will	use	the	itertuples	DataFrame	method	to	loop	over	the	rows
of	the	COVID-19	daily	data	and	the	monthly	land	temperature	data	for	Brazil.
We	add	logic	for	handling	missing	data	and	unexpected	changes	in	key	variable
values	from	one	period	to	the	next:
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1.	 Import	pandas	and	numpy,	and	load	the	COVID-19	and	land
temperature	data:

>>>	import	pandas	as	pd

>>>	import	numpy	as	np

>>>	coviddaily	=

pd.read_csv("data/coviddaily720.csv",

parse_dates=["casedate"])

>>>	ltbrazil	=

pd.read_csv("data/ltbrazil.csv")

2.	 Sort	data	by	location	and	date:

>>>	coviddaily	=

coviddaily.sort_values(['location','casedate'])

3.	 Iterate	over	rows	with	itertuples.

Use	itertuples,	which	allows	us	to	iterate	over	all	rows	as	named
tuples.	Sum	new	cases	over	all	dates	for	each	country.	With	each	change	of

country	(location)	append	the	running	total	to	rowlist,	and

then	set	the	count	to	0:	(Note	that	rowlist	is	a	list	and	we	are

appending	a	dictionary	to	rowlist	with	each	change	of	country.	A	list
of	dictionaries	is	a	good	place	to	temporarily	store	data	you	might	eventually
want	to	convert	to	a	DataFrame.):

>>>	prevloc	=	'ZZZ'

>>>	rowlist	=	[]

>>>
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>>>	for	row	in

coviddaily.itertuples():

...			if	(prevloc!=row.location):

...					if	(prevloc!='ZZZ'):

...							rowlist.append({'location':prevloc,

								'casecnt':casecnt})

...					casecnt	=	0

...					prevloc	=	row.location

...			casecnt	+=	row.new_cases

...

>>>

rowlist.append({'location':prevloc,

'casecnt':casecnt})

>>>	len(rowlist)

209

>>>	rowlist[0:4]

[{'location':	'Afghanistan',

'casecnt':	34451.0},

{'location':	'Albania',

'casecnt':	3371.0},

{'location':	'Algeria',

'casecnt':	18712.0},

{'location':	'Andorra',

'casecnt':	855.0}]
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4.	 Create	a	DataFrame	from	the	list	of	summary	values,	rowlist.

Pass	the	list	we	created	in	the	previous	step	to	the	pandas	DataFrame
method:

>>>	covidtotals	=

pd.DataFrame(rowlist)

>>>	covidtotals.head()

						location		casecnt

0		Afghanistan			34,451

1						Albania				3,371

2						Algeria			18,712

3						Andorra						855

4							Angola						483

5.	 Sort	the	land	temperature	data.

Also,	drop	rows	with	missing	values	for	temperatures:

>>>	ltbrazil	=

ltbrazil.sort_values(['station','month'])

>>>	ltbrazil	=

ltbrazil.dropna(subset=

['temperature'])

6.	 Exclude	rows	where	there	is	a	large	change	from	one	period	to	the	next.

Calculate	the	average	temperature	for	the	year,	excluding	values	for	a
temperature	more	than	3°C	greater	than	or	less	than	the	temperature	for	the
previous	month:
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>>>	prevstation	=	'ZZZ'

>>>	prevtemp	=	0

>>>	rowlist	=	[]

>>>

>>>	for	row	in	ltbrazil.itertuples():

...			if	(prevstation!=row.station):

...					if	(prevstation!='ZZZ'):

...							rowlist.append({'station':prevstation,

'avgtemp':tempcnt/stationcnt,

'stationcnt':stationcnt})

...					tempcnt	=	0

...					stationcnt	=	0

...					prevstation	=	row.station

...			#	choose	only	rows	that	are

within	3	degrees	of	the

previous	temperature		

...			if	((0	<=	abs(row.temperature-

prevtemp)	<=	3)	or

(stationcnt==0)):

...					tempcnt	+=	row.temperature

...					stationcnt	+=	1

...			prevtemp	=	row.temperature

...
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>>>

rowlist.append({'station':prevstation,

'avgtemp':tempcnt/stationcnt,

'stationcnt':stationcnt})

>>>	rowlist[0:5]

[{'station':	'ALTAMIRA',	'avgtemp':

28.310000000000002,

'stationcnt':	5},	{'station':

'ALTA_FLORESTA_AERO',

'avgtemp':	29.433636363636367,

'stationcnt':	11},	{'station':

'ARAXA',	'avgtemp':

21.612499999999997,

'stationcnt':	4},	{'station':

'BACABAL',	'avgtemp':	29.75,

'stationcnt':	4},	{'station':

'BAGE',	'avgtemp':

20.366666666666664,

'stationcnt':	9}]

7.	 Create	a	DataFrame	from	the	summary	values.

Pass	the	list	we	created	in	the	previous	step	to	the	pandas	DataFrame
method:

>>>	ltbrazilavgs	=

pd.DataFrame(rowlist)

>>>	ltbrazilavgs.head()
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														station		avgtemp		stationcnt

0												ALTAMIRA				28.31											5

1		ALTA_FLORESTA_AERO				29.43										11

2															ARAXA				21.61											4

3													BACABAL				29.75											4

4																BAGE				20.37											9

This	gives	us	a	DataFrame	with	average	temperatures	for	2019	and	the	number
of	observations	for	each	station.

How	it	works...
After	sorting	the	Covid	daily	data	by	location	and	casedate	in
Step	2,	we	loop	through	our	data	one	row	at	a	time	and	do	a	running	tally	of	new

cases	in	Step	3.	We	set	that	tally	back	to	0	when	we	get	to	a	new	country,	and
then	resume	counting.	Notice	that	we	do	not	actually	append	our	summary	of
new	cases	until	we	get	to	the	next	country.	This	is	because	there	is	no	way	to	tell
that	we	are	on	the	last	row	for	any	country	until	we	get	to	the	next	country.	That

is	not	a	problem	because	we	append	the	summary	to	rowlist	right	before

we	reset	the	value	to	0.	That	also	means	that	we	need	to	do	something	special	to
output	the	totals	for	the	last	country	since	there	is	no	next	country	reached.	We
do	this	with	a	final	append	after	the	loop	is	complete.	This	is	a	fairly	standard
approach	to	looping	through	data	and	outputting	totals	by	group.

The	summary	DataFrame	we	create	in	Steps	3	and	4	can	be	created	more
efficiently,	both	in	terms	of	the	analyst's	time	and	our	computer's	workload,	with
other	pandas	techniques	that	we	cover	in	this	chapter.	But	that	becomes	a	more
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difficult	call	when	we	need	to	do	more	complicated	calculations,	particularly
those	that	involve	comparing	values	across	rows.

Steps	6	and	7	provide	an	example	of	this.	We	want	to	calculate	the	average
temperature	for	each	station	for	the	year.	Most	stations	have	one	reading	per
month.	But	we	are	concerned	that	there	might	be	some	outlier	values	for
temperature,	defined	here	by	a	change	of	more	than	3°C	from	one	month	to	the
next.	We	want	to	exclude	those	readings	from	the	calculation	of	the	mean	for
each	station.	It	is	fairly	straightforward	to	do	that	while	iterating	over	the	data	by

storing	the	previous	value	for	temperature	(prevtemp)	and	comparing	it	to
the	current	value.

There's	more...
We	could	have	used	iterrows	in	Step	3	rather	than	itertuples,
with	almost	exactly	the	same	syntax.	Since	we	do	not	need	the	functionality	of

iterrows	here,	we	use	itertuples.	itertuples	is

easier	on	system	resources	than	iterrows.

The	hardest	tasks	to	complete	when	working	with	tabular	data	involve
calculations	across	rows:	summing	data	across	rows,	basing	a	calculation	on
values	in	a	different	row,	and	generating	running	totals.	Such	calculations	are
complicated	to	implement	and	resource-intensive,	regardless	of	language.	But	it
is	hard	to	avoid	having	to	do	them,	particularly	when	working	with	panel	data.
Some	values	for	variables	in	a	given	period	might	be	determined	by	values	in	a
previous	period.	This	is	often	more	complicated	than	the	running	totals	we	have
done	in	this	recipe.
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For	decades,	data	analysts	have	tried	to	address	these	data-cleaning	challenges
by	looping	through	rows,	carefully	inspecting	categorical	and	summary	variables
for	data	problems,	and	then	handling	the	summation	accordingly.	Although	this
continues	to	be	the	approach	that	provides	the	most	flexibility,	pandas	provides	a
number	of	data	aggregation	tools	that	run	more	efficiently	and	are	easier	to	code.
The	challenge	is	to	match	the	ability	of	looping	solutions	to	adjust	for	invalid,
incomplete,	or	atypical	data.	We	explore	these	tools	later	in	this	chapter.

Calculat ing	summaries 	by	group
with	NumPy	arrays
We	can	accomplish	much	of	what	we	did	in	the	previous	recipe	with

itertuples	using	NumPy	arrays.	We	can	also	use	NumPy	arrays	to	get
summary	values	for	subsets	of	our	data.

Getting	ready
We	will	work	again	with	the	COVID-19	case	daily	data	and	the	Brazil	land
temperature	data.

How	to	do	it…
We	copy	DataFrame	values	to	a	NumPy	array.	We	then	navigate	over	the	array,
calculating	totals	by	group	and	checking	for	unexpected	changes	in	values:
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1.	 Import	pandas	and	numpy,	and	load	the	Covid	and	land	temperature
data:

>>>	import	pandas	as	pd

>>>	import	numpy	as	np

>>>	coviddaily	=

pd.read_csv("data/coviddaily720.csv",

parse_dates=["casedate"])

>>>	ltbrazil	=

pd.read_csv("data/ltbrazil.csv")

2.	 Create	a	list	of	locations:

>>>	loclist	=

coviddaily.location.unique().tolist()

3.	 Use	a	NumPy	array	to	calculate	sums	by	location.

Create	a	NumPy	array	of	the	location	and	new	cases	data.	We	then	can	iterate
over	the	location	list	we	created	in	the	previous	step,	and	select	all	new	case

values	(casevalues[j][1])	for	each	location

(casevalues[j][0]).	We	then	sum	the	new	case	values	for	that
location:

>>>	rowlist	=	[]

>>>	casevalues	=

coviddaily[['location','new_cases']].to_numpy()

>>>

>>>	for	locitem	in	loclist:
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...			cases	=	[casevalues[j][1]	for	j

in	range(len(casevalues))\

...					if	casevalues[j][0]==locitem]

...			rowlist.append(sum(cases))

...

>>>	len(rowlist)

209

>>>	len(loclist)

209

>>>	rowlist[0:5]

[34451.0,	3371.0,	18712.0,	855.0,

483.0]

>>>	casetotals	=

pd.DataFrame(zip(loclist,rowlist),

columns=

(['location','casetotals']))

>>>	casetotals.head()

						location		casetotals

0		Afghanistan			34,451.00

1						Albania				3,371.00

2						Algeria			18,712.00

3						Andorra						855.00

4							Angola						483.00
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4.	 Sort	the	land	temperature	data	and	drop	rows	with	missing	values	for
temperature:

>>>	ltbrazil	=

ltbrazil.sort_values(['station','month'])

>>>	ltbrazil	=

ltbrazil.dropna(subset=

['temperature'])

5.	 Use	a	NumPy	array	to	calculate	average	temperature	for	the	year.

Exclude	rows	where	there	is	a	large	change	from	one	period	to	the	next:

>>>	prevstation	=	'ZZZ'

>>>	prevtemp	=	0

>>>	rowlist	=	[]

>>>	tempvalues	=

ltbrazil[['station','temperature']].to_numpy()

>>>

>>>	for	j	in	range(len(tempvalues)):

...			station	=	tempvalues[j][0]

...			temperature	=	tempvalues[j][1]

...			if	(prevstation!=station):

...					if	(prevstation!='ZZZ'):

...							rowlist.append({'station':prevstation,

'avgtemp':tempcnt/stationcnt,

'stationcnt':stationcnt})
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...					tempcnt	=	0

...					stationcnt	=	0

...					prevstation	=	station

...			if	((0	<=	abs(temperature-

prevtemp)	<=	3)	or

(stationcnt==0)):

...					tempcnt	+=	temperature

...					stationcnt	+=	1

...			prevtemp	=	temperature

...

>>>

rowlist.append({'station':prevstation,

'avgtemp':tempcnt/stationcnt,

'stationcnt':stationcnt})

>>>	rowlist[0:5]

[{'station':	'ALTAMIRA',	'avgtemp':

28.310000000000002,

'stationcnt':	5},	{'station':

'ALTA_FLORESTA_AERO',

'avgtemp':	29.433636363636367,

'stationcnt':	11},	{'station':

'ARAXA',	'avgtemp':

21.612499999999997,

'stationcnt':	4},	{'station':

'BACABAL',	'avgtemp':	29.75,
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'stationcnt':	4},	{'station':

'BAGE',	'avgtemp':

20.366666666666664,

'stationcnt':	9}]

6.	 Create	a	DataFrame	of	the	land	temperature	averages:

>>>	ltbrazilavgs	=

pd.DataFrame(rowlist)

>>>	ltbrazilavgs.head()

														station		avgtemp		stationcnt

0												ALTAMIRA				28.31											5

1		ALTA_FLORESTA_AERO				29.43										11

2															ARAXA				21.61											4

3													BACABAL				29.75											4

4																BAGE				20.37											9

This	gives	us	a	DataFrame	with	average	temperature	and	number	of	observations
per	station.	Notice	that	we	get	the	same	results	as	in	the	final	step	of	the	previous
recipe.

How	it	works…
NumPy	arrays	can	be	quite	useful	when	we	are	working	with	tabular	data	but
need	to	do	some	calculations	across	rows.	This	is	because	accessing	items	over
the	equivalent	of	rows	is	not	really	that	different	from	accessing	items	over	the

equivalent	of	columns	in	an	array.	For	example,	casevalues[5]
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[0]	(the	sixth	"row"	and	first	"column"	of	the	array)	is	accessed	in	the	same

way	as	casevalues[20][1].	Navigating	over	a	NumPy	array	is
also	faster	than	iterating	over	a	pandas	DataFrame.

We	take	advantage	of	this	in	Step	3.	We	get	all	of	the	array	rows	for	a	given

location	(if	casevalues[j][0]==locitem)	with	a	list

comprehension.	Since	we	also	need	the	location	list	in	the	DataFrame

we	will	create	of	summary	values,	we	use	zip	to	combine	the	two	lists.

We	start	working	with	the	land	temperature	data	in	Step	4,	first	sorting	it	by

station	and	month,	and	then	dropping	rows	with	missing	values	for
temperature.	The	logic	in	Step	5	is	almost	identical	to	the	logic	in	Step	6	in	the
previous	recipe.	The	main	difference	is	that	we	need	to	refer	to	the	locations	of

station	(tempvalues[j][0])	and	temperature

(tempvalues[j][1])	in	the	array.

There's	more…
When	you	need	to	iterate	over	data,	NumPy	arrays	will	generally	be	faster	than

iterating	over	a	pandas	DataFrame	with	itertuples	or

iterrows.	Also,	if	you	tried	to	run	the	list	comprehension	in	Step	3	using

itertuples,	which	is	possible,	you	would	be	waiting	some	time	for	it
to	finish.	In	general,	if	you	want	to	do	a	quick	summary	of	values	for	some
segment	of	your	data,	using	NumPy	arrays	is	a	reasonable	choice.

See	also
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The	remaining	recipes	in	this	chapter	rely	on	the	powerful	groupby
method	of	pandas	DataFrames	to	generate	group	totals.

Using	groupby	 to 	organize	data
by	groups
At	a	certain	point	in	most	data	analysis	projects,	we	have	to	generate	summary
statistics	by	groups.	While	this	can	be	done	using	the	approaches	in	the	previous

recipe,	in	most	cases	the	pandas	DataFrame	groupby	method	is	a	better

choice.	If	groupby	can	handle	an	aggregation	task—and	it	usually	can—it
is	likely	the	most	efficient	way	to	accomplish	that	task.	We	make	good	use	of

groupby	in	the	remaining	recipes	in	this	chapter.	We	go	over	the	basics	in
this	recipe.

Getting	ready
We	will	work	with	the	COVID-19	daily	data	in	this	recipe.

How	to	do	it…
We	will	create	a	pandas	groupby	DataFrame	and	use	it	to	generate
summary	statistics	by	group:

1.	 Import	pandas	and	numpy,	and	load	the	Covid	case	daily	data:

>>>	import	pandas	as	pd
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>>>	import	numpy	as	np

>>>	coviddaily	=

pd.read_csv("data/coviddaily720.csv",

parse_dates=["casedate"])

2.	 Create	a	pandas	groupby	DataFrame:

>>>	countrytots	=

coviddaily.groupby(['location'])

>>>	type(countrytots)

<class

'pandas.core.groupby.generic.DataFrameGroupBy'>

3.	 Create	DataFrames	for	the	first	and	last	rows	of	each	country:

>>>	countrytots.first().iloc[0:5,

0:5]

												iso_code			casedate

continent		new_cases		new_deaths

location																																																								

Afghanistan						AFG	2019-12-

31						Asia										0											0

Albania										ALB	2020-03-

09				Europe										2											0

Algeria										DZA	2019-12-

31				Africa										0											0

Andorra										AND	2020-03-

03				Europe										1											0
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Angola											AGO	2020-03-

22				Africa										2											0

>>>	countrytots.last().iloc[0:5,	0:5]

												iso_code			casedate

continent		new_cases		new_deaths

location																																																								

Afghanistan						AFG	2020-07-

12						Asia									85										16

Albania										ALB	2020-07-

12				Europe									93											4

Algeria										DZA	2020-07-

12				Africa								904										16

Andorra										AND	2020-07-

12				Europe										0											0

Angola											AGO	2020-07-

12				Africa									25											2

>>>	type(countrytots.last())

<class	'pandas.core.frame.DataFrame'>

4.	 Get	all	the	rows	for	a	country:

>>>

countrytots.get_group('Zimbabwe').iloc[0:5,

0:5]

						iso_code			casedate

continent		new_cases		new_deaths
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29099						ZWE	2020-03-

21				Africa										1											0

29100						ZWE	2020-03-

22				Africa										1											0

29101						ZWE	2020-03-

23				Africa										0											0

29102						ZWE	2020-03-

24				Africa										0											1

29103						ZWE	2020-03-

25				Africa										0											0

5.	 Loop	through	the	groups:

>>>	for	name,	group	in	countrytots:

...			if	(name	in

['Malta','Kuwait']):

...					print(group.iloc[0:5,	0:5])

...

						iso_code			casedate	location

continent		new_cases

14707						KWT	2019-12-

31			Kuwait						Asia										0

14708						KWT	2020-01-

01			Kuwait						Asia										0

14709						KWT	2020-01-

02			Kuwait						Asia										0
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14710						KWT	2020-01-

03			Kuwait						Asia										0

14711						KWT	2020-01-

04			Kuwait						Asia										0

						iso_code			casedate	location

continent		new_cases

17057						MLT	2020-03-

07				Malta				Europe										1

17058						MLT	2020-03-

08				Malta				Europe										2

17059						MLT	2020-03-

09				Malta				Europe										0

17060						MLT	2020-03-

10				Malta				Europe										2

17061						MLT	2020-03-

11				Malta				Europe										1

6.	 Show	the	number	of	rows	for	each	country:

>>>	countrytots.size()

location

Afghanistan							185

Albania											126

Algeria											190

Andorra											121

Angola												113
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																	...

Vietnam											191

Western	Sahara					78

Yemen														94

Zambia												116

Zimbabwe										114

Length:	209,	dtype:	int64

7.	 Show	the	summary	statistics	by	country:

>>>

countrytots.new_cases.describe().head()

													count		mean		std		min		25%		50%		75%			max

location																																															

Afghanistan				185			186		257				0				0			37		302

1,063

Albania								126				27			25				0				9			17			36				93

Algeria								190				98		124				0				0			88		150			904

Andorra								121					7			13				0				0				1				9				79

Angola									113					4				9				0				0				1				5				62

>>>

countrytots.new_cases.sum().head()

location

Afghanistan			34,451

Albania								3,371
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Algeria							18,712

Andorra										855

Angola											483

Name:	new_cases,	dtype:	float64

These	steps	demonstrate	how	remarkably	useful	the	groupby	DataFrame
object	is	when	we	want	to	generate	summary	statistics	by	categorical	variables.

How	it	works...
In	Step	2,	we	create	a	pandas	DataFrame	groupby	object	using	the	pandas

DataFrame	groupby	method,	passing	it	a	column	or	list	of	columns	for	the

grouping.	Once	we	have	a	groupby	DataFrame,	we	can	generate	statistics
by	group	with	the	same	tools	that	we	use	to	generate	summary	statistics	for	the

whole	DataFrame.	describe,	mean,	sum,	and	similar	methods	work

on	the	groupby	DataFrame—or	series	created	from	it—as	expected,
except	the	summary	is	run	for	each	group.

In	Step	3,	we	use	first	and	last	to	create	DataFrames	with	the	first	and

last	occurrence	of	each	group.	We	use	get_group	to	get	all	the	rows	for	a

particular	group	in	Step	4.	We	can	also	loop	over	the	groups	and	use	size	to
count	the	number	of	rows	for	each	group.

In	Step	7,	we	create	a	series	groupby	object	from	the	DataFrame

groupby	object.	Using	the	resulting	object's	aggregation	methods	gives	us
summary	statistics	for	a	series	by	group.	One	thing	is	clear	about	the	distribution

of	new_cases	from	this	output:	it	varies	quite	a	bit	by	country.	For
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example,	we	can	see	right	away	that	the	interquartile	range	is	quite	different,
even	for	the	first	five	countries.

There's	more...
The	output	from	Step	7	is	quite	useful.	It	is	worth	saving	output	such	as	that	for
each	important	continuous	variable	where	the	distribution	is	meaningfully
different	by	group.

Pandas	groupby	DataFrames	are	extraordinarily	powerful	and	easy	to	use.
Step	7	shows	just	how	easy	it	is	to	create	the	summaries	by	groups	that	we
created	in	the	first	two	recipes	in	this	chapter.	Unless	the	DataFrame	we	are
working	with	is	small,	or	the	task	involves	very	complicated	calculations	across

rows,	the	groupby	method	is	a	superior	choice	to	looping.

Using	more	complicated
aggregat ion	funct ions	with
groupby

In	the	previous	recipe,	we	created	a	groupby	DataFrame	object	and	used	it
to	run	summary	statistics	by	groups.	We	use	chaining	in	this	recipe	to	create	the
groups,	choose	the	aggregation	variable(s),	and	select	the	aggregation
function(s),	all	in	one	line.	We	also	take	advantage	of	the	flexibility	of	the

groupby	object,	which	allows	us	to	choose	the	aggregation	columns	and
functions	in	a	variety	of	ways.
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Getting	ready
We	will	work	with	the	National	Longitudinal	Survey	of	Youth	(NLS)	data	in
this	recipe.

DATA	NOTE
The	NLS,	administered	by	the	United	States	Bureau	of	Labor	Statistics,	are
longitudinal	surveys	of	individuals	who	were	in	high	school	in	1997	when	the
surveys	started.	Participants	were	surveyed	each	year	through	2018.	The	surveys
are	available	for	public	use	at	nlsinfo.org.

How	to	do	it…
We	do	more	complicated	aggregations	with	groupby	than	we	did	in	the
previous	recipe,	taking	advantage	of	its	flexibility:

1.	 Import	pandas	and	load	the	NLS	data:

>>>	import	pandas	as	pd

>>>	nls97	=

pd.read_csv("data/nls97b.csv")

>>>	nls97.set_index("personid",

inplace=True)

2.	 Review	the	structure	of	the	data:

>>>	nls97.iloc[:,0:7].info()

<class	'pandas.core.frame.DataFrame'>
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Int64Index:	8984	entries,	100061	to

999963

Data	columns	(total	7	columns):

#			Column																	Non-Null

Count		Dtype		

---		------																	---------

-----		-----		

0			gender																	8984	non-

null			object

1			birthmonth													8984	non-

null			int64		

2			birthyear														8984	non-

null			int64		

3			highestgradecompleted		6663	non-

null			float64

4			maritalstatus										6672	non-

null			object

5			childathome												4791	non-

null			float64

6			childnotathome									4791	non-

null			float64

dtypes:	float64(3),	int64(2),

object(2)

memory	usage:	561.5+	KB
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3.	 Review	some	of	the	categorical	data:

>>>	catvars	=

['gender','maritalstatus','highestdegree']

>>>

>>>	for	col	in	catvars:

...			print(col,

nls97[col].value_counts().sort_index(),

sep="\n\n",	end="\n\n\n")

...

gender

Female				4385

Male						4599

Name:	gender,	dtype:	int64

maritalstatus

Divorced										663

Married										3066

Never-married				2766

Separated									154

Widowed												23

Name:	maritalstatus,	dtype:	int64

highestdegree

0.	None													953

1.	GED													1146
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2.	High	School					3667

3.	Associates							737

4.	Bachelors							1673

5.	Masters										603

6.	PhD															54

7.	Professional					120

Name:	highestdegree,	dtype:	int64

4.	 Review	some	descriptive	statistics:

>>>	contvars	=

['satmath','satverbal','weeksworked06','gpaoverall',

...			'childathome']

>>>

>>>	nls97[contvars].describe()

							satmath		satverbal		weeksworked06		gpaoverall		childathome

count		1,407.0				1,406.0								8,340.0					6,004.0						4,791.0

mean					500.6						499.7											38.4									2.8										1.9

std						115.0						112.2											18.9									0.6										1.3

min								7.0							14.0												0.0									0.1										0.0

25%						430.0						430.0											27.0									2.4										1.0

50%						500.0						500.0											51.0									2.9										2.0

75%						580.0						570.0											52.0									3.3										3.0

max						800.0						800.0											52.0									4.2										9.0

5.	 Look	at	Scholastic	Assessment	Test	(SAT)	math	scores	by	gender.
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We	pass	the	column	name	to	groupby	to	group	by	that	column:

>>>	nls97.groupby('gender')

['satmath'].mean()

gender

Female			487

Male					517

Name:	satmath,	dtype:	float64

6.	 Look	at	the	SAT	math	scores	by	gender	and	highest	degree	earned.

We	can	pass	a	list	of	column	names	to	groupby	to	group	by	more	than
one	column:

>>

nls97.groupby(['gender','highestdegree'])

['satmath'].mean()

gender		highestdegree		

Female		0.	None											333

								1.	GED												405

								2.	High	School				431

								3.	Associates					458

								4.	Bachelors						502

								5.	Masters								508

								6.	PhD												575

								7.	Professional			599

Male				0.	None											540
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								1.	GED												320

								2.	High	School				468

								3.	Associates					481

								4.	Bachelors						542

								5.	Masters								574

								6.	PhD												621

								7.	Professional			588

Name:	satmath,	dtype:	float64

7.	 Look	at	the	SAT	math	and	verbal	scores	by	gender	and	highest	degree	earned.

We	can	use	a	list	to	summarize	values	for	more	than	one	variable,	in	this	case

satmath	and	satverbal:

>>>

nls97.groupby(['gender','highestdegree'])

[['satmath','satverbal']].mean()

																								satmath		satverbal

gender

highestdegree																						

Female	0.

None														333								409

							1.

GED															405								390

							2.	High

School							431								444
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							3.

Associates								458								466

							4.

Bachelors									502								506

							5.

Masters											508								534

							6.

PhD															575								558

							7.

Professional						599								587

Male			0.

None														540								483

							1.

GED															320								360

							2.	High

School							468								457

							3.

Associates								481								462

							4.

Bachelors									542								528

							5.

Masters											574								545

							6.

PhD															621								623
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							7.

Professional						588								592

8.	 Add	columns	for	the	count,	max,	and	standard	deviation.

Use	the	agg	function	to	return	several	summary	statistics:

>>>

nls97.groupby(['gender','highestdegree'])

['gpaoverall'].agg(['count','mean','max','std'])

																								count		mean		max		std

gender

highestdegree																									

Female	0.

None												148			2.5		4.0		0.7

							1.

GED													227			2.3		3.9		0.7

							2.	High

School				1212			2.8		4.2		0.5

							3.

Associates						290			2.9		4.0		0.5

							4.

Bachelors							734			3.2		4.1		0.5

							5.

Masters									312			3.3		4.1		0.4

							6.

PhD														22			3.5		4.0		0.5
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							7.

Professional					53			3.5		4.1		0.4

Male			0.

None												193			2.2		4.0		0.6

							1.

GED													345			2.2		4.0		0.6

							2.	High

School				1436			2.6		4.0		0.5

							3.

Associates						236			2.7		3.8		0.5

							4.

Bachelors							560			3.1		4.1		0.5

							5.

Masters									170			3.3		4.0		0.4

							6.

PhD														20			3.4		4.0		0.6

							7.

Professional					38			3.4		4.0		0.3

9.	 Use	a	dictionary	for	more	complicated	aggregations:

>>>	pd.options.display.float_format	=

'{:,.1f}'.format

>>>	aggdict	=	{'weeksworked06':

['count',	'mean',	'max','std'],

'childathome':['count',	'mean',

'max',	'std']}
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>>>

nls97.groupby(['highestdegree']).agg(aggdict)

																weeksworked06																childathome													

																								count

mean		max		std							count	mean

max	std

highestdegree																																																								

0.	None																			703	29.7

52.0	21.6									439		1.8	8.0

1.6

1.	GED																			1104	33.2

52.0	20.6									693		1.7	9.0

1.5

2.	High	School											3368	39.4

52.0	18.6								1961		1.9	7.0

1.3

3.	Associates													722	40.7

52.0	17.7									428		2.0	6.0

1.1

4.	Bachelors													1642	42.2

52.0	16.1									827		1.9	8.0

1.0

5.	Masters																601	42.2

52.0	16.1									333		1.9	5.0

0.9
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6.	PhD																					53	38.2

52.0	18.6										32		2.1	6.0

1.1

7.	Professional											117	27.1

52.0	20.4										57		1.8	4.0

0.8

>>>

nls97.groupby(['maritalstatus']).agg(aggdict)

														weeksworked06																childathome													

																						count

mean		max		std							count	mean

max	std

maritalstatus																																																						

Divorced																660	37.5	52.0

19.1									524		1.5	5.0	1.2

Married																3033	40.3	52.0

17.9								2563		2.1	8.0	1.1

Never-married										2734	37.2	52.0

19.1								1502		1.6	9.0	1.3

Separated															153	33.8	52.0

20.2									137		1.5	8.0	1.4

Widowed																		23	37.1	52.0

19.3										18		1.8	5.0	1.4
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We	display	the	same	summary	statistics	for	weeksworked06	and

childathome,	but	we	could	have	specified	different	aggregation
functions	for	each	using	the	same	syntax	as	we	used	in	Step	9.

How	it	works…
We	first	take	a	look	at	some	summary	statistics	for	key	columns	in	the
DataFrame.	We	get	frequencies	for	the	categorical	variables	in	Step	3,	and	some
descriptives	for	the	continuous	variables	in	Step	4.	It	is	a	good	idea	to	have
summary	values	for	the	DataFrame	as	a	whole	in	front	of	us	before	generating
statistics	by	group.

We	are	then	ready	to	create	summary	statistics	using	groupby.	This
involves	three	steps:

1.	 Creating	a	groupby	DataFrame	based	on	one	or	more	categorical
variables

2.	 Selecting	the	column(s)	to	be	used	for	the	summary	statistics

3.	 Choosing	the	aggregation	function(s)

We	use	chaining	in	this	recipe	to	do	all	three	in	one	line.	So,

nls97.groupby('gender')

['satmath'].mean()	in	Step	5	does	three	things:

nls97.groupby('gender')	creates	the	groupby

DataFrame	object,	['satmath']	chooses	the	aggregation	column,	and

mean()	is	the	aggregation	function.
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We	can	pass	a	column	name	(as	in	Step	5)	or	a	list	of	column	names	(as	in	Step

6)	to	groupby	to	create	groupings	by	one	or	more	columns.	We	can	select
multiple	variables	for	aggregation	with	a	list	of	those	variables,	as	we	do	in	Step

7	with	[['satmath','satverbal']].

We	can	chain	a	specific	summary	function	such	as	mean,	count,	or

max.	Or,	we	could	pass	a	list	to	agg	to	choose	multiple	aggregation
functions,	such	as	with

agg(['count','mean','max','std'])	in	Step	8.
We	can	use	the	familiar	pandas	and	NumPy	aggregation	functions	or	a	user-
defined	function,	which	we	explore	in	the	next	recipe.

Another	important	takeaway	from	Step	8	is	that	agg	sends	the	aggregation
columns	to	each	function	a	group	at	a	time.	The	calculations	in	each	aggregation

function	are	run	for	each	group	in	the	groupby	DataFrame.	Another	way	to
conceptualize	this	is	that	it	allows	us	to	run	the	same	functions	we	are	used	to
running	across	a	whole	DataFrame	for	one	group	at	a	time,	accomplishing	this
by	automating	the	process	of	sending	the	data	for	each	group	to	the	aggregation
functions.

There's	more…
We	first	get	a	sense	of	how	the	categorical	and	continuous	variables	in	the
DataFrame	are	distributed.	Often,	we	group	data	to	see	how	a	distribution	of	a
continuous	variable,	such	as	weeks	worked,	differs	by	a	categorical	variable,
such	as	marital	status.	Before	doing	that,	it	is	helpful	to	have	a	good	idea	of	how
those	variables	are	distributed	across	the	whole	dataset.
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The	nls97	dataset	only	has	SAT	scores	for	about	1,400	of	8,984
respondents,	so	we	need	to	be	careful	when	examining	SAT	scores	by	different
groups.	This	means	that	some	of	the	counts	by	gender	and	highest	degree,
especially	for	PhD	recipients,	are	a	little	too	small	to	be	reliable.	There	are
outliers	for	SAT	math	and	verbal	scores	(if	we	define	outliers	as	1.5	times	the
interquartile	range	above	the	third	quartile	or	below	the	first	quartile).

We	have	acceptable	counts	for	weeks	worked	and	number	of	children	living	at
home	for	all	values	of	highest	degree	achieved,	and	values	of	marital	status
except	for	widowed.	The	average	weeks	worked	for	folks	who	received	a
professional	degree	is	unexpected.	It	is	lower	than	for	any	other	group.	A	good
next	step	would	be	to	see	how	persistent	this	is	over	the	years.	(We	are	just
looking	at	2006	weeks	worked	here,	but	there	are	20	years'	of	data	on	weeks
worked.)

See	also
The	nls97	file	is	panel	data	masquerading	as	individual-level	data.	The
panel	data	structure	can	be	recovered,	facilitating	analysis	over	time	of	areas
such	as	employment	and	school	enrollment.	We	do	this	in	the	recipes	in	Chapter
9,	Tidying	and	Reshaping	Data.

Using	user-def ined	funct ions
and	apply	with	groupby
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Despite	the	numerous	aggregation	functions	available	in	pandas	and	NumPy,	we
sometimes	have	to	write	our	own	to	get	the	results	we	need.	In	some	cases,	this

requires	the	use	of	apply.

Getting	ready
We	will	work	with	the	NLS	data	in	this	recipe.

How	to	do	it…
We	will	create	our	own	functions	to	define	the	summary	statistics	we	want	by
group:

1.	 Import	pandas	and	the	NLS	data:

>>>	import	pandas	as	pd

>>>	import	numpy	as	np

>>>	nls97	=

pd.read_csv("data/nls97b.csv")

>>>	nls97.set_index("personid",

inplace=True)

2.	 Create	a	function	for	defining	the	interquartile	range:

>>>	def	iqr(x):

...			return	x.quantile(0.75)	-

x.quantile(0.25)

...
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3.	 Run	the	interquartile	range	function.

First,	create	a	dictionary	that	specifies	which	aggregation	functions	to	run	on
each	analysis	variable:

>>>	aggdict	=	{'weeksworked06':

['count',	'mean',	iqr],

'childathome':['count',	'mean',

iqr]}

>>>

nls97.groupby(['highestdegree']).agg(aggdict)

																weeksworked06											childathome									

																								count

mean		iqr							count	mean	iqr

highestdegree																																															

0.	None																			703	29.7

47.0									439		1.8	3.0

1.	GED																			1104	33.2

39.0									693		1.7	3.0

2.	High	School											3368	39.4

21.0								1961		1.9	2.0

3.	Associates													722	40.7

18.0									428		2.0	2.0

4.	Bachelors													1642	42.2

14.0									827		1.9	1.0
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5.	Masters																601	42.2

13.0									333		1.9	1.0

6.	PhD																					53	38.2

23.0										32		2.1	2.0

7.	Professional											117	27.1

45.0										57		1.8	1.0

4.	 Define	a	function	to	return	selected	summary	statistics	as	a	series:

>>>	def	gettots(x):

...			out	=	{}

...			out['qr1']	=	x.quantile(0.25)

...			out['med']	=	x.median()

...			out['qr3']	=	x.quantile(0.75)

...			out['count']	=	x.count()

...			return	pd.Series(out)

...

5.	 Use	apply	to	run	the	function.

This	will	create	a	series	with	a	multi-index	based	on

highestdegree	values	and	the	desired	summary	statistics:

>>>	pd.options.display.float_format	=

'{:,.0f}'.format

>>>	nls97.groupby(['highestdegree'])

['weeksworked06'].apply(gettots)

highestdegree									
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0.	None										qr1									5

																	med								34

																	qr3								52

																	count					703

1.	GED											qr1								13

																	med								42

																	qr3								52

																	count			1,104

2.	High	School			qr1								31

																	med								52

																	qr3								52

																	count			3,368

3.	Associates				qr1								34

																	med								52

																	qr3								52

																	count					722

.....	abbreviated	to	save	space	.....

Name:	weeksworked06,	dtype:	float64

6.	 Use	reset_index	to	use	the	default	index	instead	of	the	index

created	from	the	groupby	DataFrame:

>>>	nls97.groupby(['highestdegree'])

['weeksworked06'].apply(gettots).reset_index()
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						highestdegree

level_1		weeksworked06

0											0.

None					qr1														5

1											0.

None					med													34

2											0.

None					qr3													52

3											0.

None			count												703

4												1.

GED					qr1													13

5												1.

GED					med													42

6												1.

GED					qr3													52

7												1.

GED			count										1,104

8				2.	High

School					qr1													31

9				2.	High

School					med													52

10			2.	High

School					qr3													52
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11			2.	High

School			count										3,368

12				3.

Associates					qr1													34

13				3.

Associates					med													52

14				3.

Associates					qr3													52

15				3.

Associates			count												722

.....	abbreviated	to	save	space	.....

7.	 Chain	with	unstack	instead	to	create	columns	based	on	the	summary
variables.

This	will	create	a	DataFrame	with	the	highestdegree	values	as
the	index,	and	aggregation	values	in	the	columns:

>>>	nlssums	=

nls97.groupby(['highestdegree'])

['weeksworked06'].apply(gettots).unstack()

>>>	nlssums

																	qr1		med		qr3		count

highestdegree																								

0.	None												5			34			52				703

1.	GED												13			42			52		1,104

2.	High	School				31			52			52		3,368
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3.	Associates					34			52			52				722

4.	Bachelors						38			52			52		1,642

5.	Masters								39			52			52				601

6.	PhD												29			50			52					53

7.	Professional				4			29			49				117

>>>	nlssums.info()

<class	'pandas.core.frame.DataFrame'>

Index:	8	entries,	0.	None	to	7.

Professional

Data	columns	(total	4	columns):

#			Column		Non-Null	Count		Dtype		

---		------		--------------		-----		

0			qr1					8	non-null						float64

1			med					8	non-null						float64

2			qr3					8	non-null						float64

3			count			8	non-null						float64

dtypes:	float64(4)

memory	usage:	320.0+	bytes

unstack	is	useful	when	we	want	to	rotate	parts	of	the	index	to	the
columns'	axis.

How	it	works...
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We	define	a	very	simple	function	to	calculate	interquartile	ranges	by	group	in
Step	2.	We	then	include	calls	to	that	function	in	our	list	of	aggregation	functions
in	Step	3.

Steps	4	and	5	are	a	little	more	complicated.	We	define	a	function	that	calculates
the	first	and	third	quartiles	and	median,	and	counts	the	number	of	rows.	It	returns

a	series	with	these	values.	By	combining	a	groupby	DataFrame	with

apply	in	Step	5,	we	get	the	gettots	function	to	return	that	series	for
each	group.

Step	5	gives	us	the	numbers	we	want,	but	maybe	not	in	the	best	format.	If,	for
example,	we	want	to	use	the	data	for	another	operation—say,	a	visualization—
we	need	to	chain	some	additional	methods.	One	possibility	is	to	use

reset_index.	This	will	replace	the	multi-index	with	the	default	index.

Another	option	is	to	use	unstack.	This	will	create	columns	from	the

second	level	of	the	index	(having	qr1,	med,	qr3,	and	count	values).

There's	more...
Interestingly,	the	interquartile	ranges	for	weeks	worked	and	number	of	children
at	home	drop	substantially	as	education	increases.	There	seems	to	be	a	higher
variation	in	those	variables	among	groups	with	less	education.	This	should	be
examined	more	closely	and	has	implications	for	statistical	testing	that	assumes
common	variances	across	groups.

In	Step	5,	we	could	have	set	the	groupby	method's	as_index

parameter	to	False.	If	we	had	done	so,	we	would	not	have	had	to	use

reset_index	or	unstack	to	deal	with	the	multi-index	created.
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The	disadvantage	of	setting	that	parameter	to	False,	as	you	can	see	in	the

following	code	snippet,	is	that	the	groupby	values	are	not	reflected	in	the
returned	DataFrame,	either	as	an	index	or	a	column.	This	is	because	we	use

groupby	with	apply	and	a	user-defined	function.	When	we	use

as_index=False	with	an	agg	function,	we	get	a	column	with	the

groupby	values	(we	see	a	couple	of	examples	of	that	in	the	next	recipe):

>>>	nls97.groupby(['highestdegree'],

as_index=False)

['weeksworked06'].apply(gettots)

			qr1		med		qr3		count

0				5			34			52				703

1			13			42			52		1,104

2			31			52			52		3,368

3			34			52			52				722

4			38			52			52		1,642

5			39			52			52				601

6			29			50			52					53

7				4			29			49				117

See	also
We	do	much	more	with	stack	and	unstack	in	Chapter	9,	Tidying	and
Reshaping	Data.
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Using	groupby	 to 	change	 the
uni t 	of 	analysis 	of 	a 	DataFrame
The	DataFrame	that	we	created	in	the	last	step	of	the	previous	recipe	was
something	of	a	fortunate	by-product	of	our	efforts	to	generate	multiple	summary
statistics	by	groups.	There	are	times	when	we	really	do	need	to	aggregate	data	to
change	the	unit	of	analysis—say,	from	monthly	utility	expenses	per	family	to
annual	utility	expenses	per	family,	or	from	students'	grades	per	course	to
students'	overall	grade	point	average	(GPA).

groupby	is	a	good	tool	for	collapsing	the	unit	of	analysis,	particularly
when	summary	operations	are	required.	When	we	only	need	to	select
unduplicated	rows—perhaps	the	first	or	last	row	for	each	individual	over	a	given

interval—then	the	combination	of	sort_values	and

drop_duplicates	will	do	the	trick.	But	we	often	need	to	do	some
calculation	across	the	rows	for	each	group	before	collapsing.	That	is	when

groupby	comes	in	very	handy.

Getting	ready
We	will	work	with	the	COVID-19	case	daily	data,	which	has	one	row	per
country	per	day.	We	will	also	work	with	the	Brazil	land	temperature	data,	which
has	one	row	per	month	per	weather	station.

How	to	do	it...
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We	will	use	groupby	to	create	a	DataFrame	of	summary	values	by	group:

1.	 Import	pandas	and	load	the	Covid	and	land	temperature	data:

>>>	import	pandas	as	pd

>>>	coviddaily	=

pd.read_csv("data/coviddaily720.csv",

parse_dates=["casedate"])

>>>	ltbrazil	=

pd.read_csv("data/ltbrazil.csv")

2.	 Convert	Covid	data	from	one	country	per	day	to	summaries	across	all
countries	by	day:

>>>	coviddailytotals	=

coviddaily.loc[coviddaily.casedate.between('2020-

02-01','2020-07-12')].\

...			groupby(['casedate'],

as_index=False)

[['new_cases','new_deaths']].\

...			sum()

>>>

>>>	coviddailytotals.head(10)

				casedate		new_cases		new_deaths

0	2020-02-01						2,120										46

1	2020-02-02						2,608										46

2	2020-02-03						2,818										57

3	2020-02-04						3,243										65
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4	2020-02-05						3,897										66

5	2020-02-06						3,741										72

6	2020-02-07						3,177										73

7	2020-02-08						3,439										86

8	2020-02-09						2,619										89

9	2020-02-10						2,982										97

3.	 Create	a	DataFrame	with	average	temperatures	for	each	station	in	Brazil.

First,	remove	rows	with	missing	temperature	values,	and	show	some	data	for	a
few	rows:

>>>	ltbrazil	=

ltbrazil.dropna(subset=

['temperature'])

>>>	ltbrazil.loc[103508:104551,

['station','year','month','temperature','elevation','latabs']]

																			station		year		month		temperature		elevation		latabs

103508					CRUZEIRO_DO_SUL		2019						1											26								194							8

103682														CUIABA		2019						1											29								151						16

103949		SANTAREM_AEROPORTO		2019						1											27									60							2

104051		ALTA_FLORESTA_AERO		2019						1											27								289						10

104551										UBERLANDIA		2019						1											25								943						19

>>>

>>>	ltbrazilavgs	=

ltbrazil.groupby(['station'],
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as_index=False).\

...			agg({'latabs':'first','elevation':'first','temperature':'mean'})

>>>

>>>	ltbrazilavgs.head(10)

															station		latabs		elevation		temperature

0													ALTAMIRA							3								112											28

1			ALTA_FLORESTA_AERO						10								289											29

2																ARAXA						20						1,004											22

3														BACABAL							4									25											30

4																	BAGE						31								242											19

5													BARBALHA							7								409											27

6													BARCELOS							1									34											28

7							BARRA_DO_CORDA							6								153											29

8												BARREIRAS						12								439											27

9		BARTOLOMEU_LISANDRO						22									17											26

Let's	take	a	closer	look	at	how	the	aggregation	functions	in	these	examples	work.

How	it	works…
In	Step	2,	we	first	select	the	dates	that	we	want	(some	countries	started	reporting

COVID-19	cases	later	than	others).	We	create	a	DataFrame	groupby

object	based	on	casedate,	choose	new_cases	and

new_deaths	as	the	aggregation	variables,	and	select	sum	for	the
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aggregation	function.	This	produces	a	sum	for	both	new_cases	and

new_deaths	for	each	group	(casedate).	Depending	on	your

purposes	you	may	not	want	casedate	to	be	the	index,	which	would

happen	if	we	did	not	set	as_index	to	False.

We	often	need	to	use	a	different	aggregation	function	with	different	aggregation
variables.	We	might	want	to	take	the	first	(or	last)	value	for	one	variable,	and	get
the	mean	of	the	values	of	another	variable	by	group.	This	is	what	we	do	in	Step

3.	We	do	this	by	passing	a	dictionary	to	the	agg	function,	with	our	aggregation
variables	as	keys	and	the	aggregation	function	to	use	as	values.
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Chapter 	8: 	Addressing	Data
Issues 	When	Combining
DataFrames
At	some	point	during	most	data	cleaning	projects,	the	analyst	will	have	to
combine	data	from	different	data	tables.	This	involves	either	appending	data
with	the	same	structure	to	existing	data	rows	or	doing	a	merge	to	retrieve
columns	from	a	different	data	table.	The	former	is	sometimes	referred	to	as
combining	data	vertically,	or	concatenating,	while	the	latter	is	referred	to	as
combining	data	horizontally,	or	merging.

Merges	can	be	categorized	by	the	amount	of	duplication	of	merge-by	column
values.	With	one-to-one	merges,	merge-by	column	values	appear	once	on	each
data	table.	One-to-many	merges	have	unduplicated	merge-by	column	values	on
one	side	of	the	merge	and	duplicated	merge-by	column	values	on	the	other	side.
Many-to-many	merges	have	duplicated	merge-by	column	values	on	both	sides.
Merging	is	further	complicated	by	the	fact	that	there	is	often	no	perfect
correspondence	between	merge-by	values	on	the	data	tables;	each	data	table	may
have	values	in	the	merge-by	column	that	are	not	present	in	the	other	data	table.

New	data	issues	can	be	introduced	when	data	is	combined.	When	data	is
appended,	it	may	have	different	logical	values	than	the	original	data,	even	when
the	columns	have	the	same	names	and	data	types.	For	merges,	whenever	merge-
by	values	are	missing	on	one	side	of	a	merge,	the	columns	that	are	added	will
have	missing	values.	For	one-to-one	or	one-to-many	merges,	there	may	be
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unexpected	duplicates	in	merge-by	values,	resulting	in	values	for	other	columns
being	duplicated	unintentionally.

In	this	chapter,	we	will	combine	DataFrames	vertically	and	horizontally	and
consider	strategies	for	dealing	with	the	data	problems	that	often	arise.
Specifically,	in	this	chapter,	we	will	cover	the	following	recipes:

Combining	DataFrames	vertically

Doing	one-to-one	merges

Doing	one-to-one	merges	by	multiple	columns

Doing	one-to-many	merges

Doing	many-to-many	merges

Developing	a	merge	routine

Technical 	 requirements
The	code	and	notebooks	for	this	chapter	are	available	on	GitHub	at
https://github.com/PacktPublishing/Python-Data-Cleaning-Cookbook

Combining	DataFrames
vert ical ly
There	are	times	when	we	need	to	append	rows	from	one	data	table	to	another.
This	will	almost	always	be	rows	from	data	tables	with	similar	structures,	along
with	the	same	columns	and	data	types.	For	example,	we	might	get	a	new	CSV
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file	containing	hospital	patient	outcomes	each	month	and	need	to	add	that	to	our
existing	data.	Alternatively,	we	might	end	up	working	at	a	school	district	central
office	and	receive	data	from	many	different	schools.	We	might	want	to	combine
this	data	before	conducting	analyses.

Even	when	the	data	structure	across	months	and	across	schools	(in	these
examples)	is	theoretically	the	same,	it	may	not	be	in	practice.	Business	practices
can	change	from	one	period	to	another.	This	can	be	intentional	or	happen
inadvertently	due	to	staff	turnover	or	some	external	factor.	One	institution	or
department	might	implement	practices	somewhat	differently	than	another,	and
some	data	values	might	be	different	for	some	institutions	or	missing	altogether.

We	are	likely	to	come	across	a	change	in	what	seems	like	similar	data	when	we
let	our	guard	down,	typically	when	we	start	to	assume	that	the	new	data	will	look
like	the	old	data.	I	try	to	remember	this	whenever	I	combine	data	vertically.	I
will	be	referring	to	combining	data	vertically	as	concatenating	or	appending	for
the	rest	of	this	chapter.

In	this	recipe,	we'll	use	the	pandas	concat	function	to	append	rows	from	a
pandas	DataFrame	to	another	DataFrame.	We	will	also	do	a	few	common	checks

on	the	concat	operation	to	confirm	that	the	resulting	DataFrame	is	what	we
expected.

Getting	ready
We	will	work	with	land	temperature	data	from	several	countries	in	this	recipe.
This	data	includes	the	monthly	average	temperature,	latitude,	longitude,	and
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elevation	at	many	weather	stations	in	each	country	during	2019.	The	data	for
each	country	is	contained	in	a	CSV	file.

DATA	NOTE
The	data	for	this	recipe	has	been	taken	from	the	Global	Historical	Climatology
Network	integrated	database,	which	has	been	made	available	for	public	use	by
the	United	States	National	Oceanic	and	Atmospheric	Administration,	at
https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-
datasets/global-historical-climatology-network-monthly-version-4.

How	to	do	it…
In	this	recipe,	we	will	combine	similarly	structured	DataFrames	vertically,	check
the	values	in	the	concatenated	data,	and	fix	missing	values.	Let's	get	started:

1.	 Import	pandas	and	NumPy,	as	well	as	the	os	module:

>>>	import	pandas	as	pd

>>>	import	numpy	as	np

>>>	import	os

2.	 Load	the	data	from	Cameroon	and	Poland:

>>>	ltcameroon	=

pd.read_csv("data/ltcountry/ltcameroon.csv")

>>>	ltpoland	=

pd.read_csv("data/ltcountry/ltpoland.csv")

3.	 Concatenate	the	Cameroon	and	Poland	data:
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>>>	ltcameroon.shape

(48,	11)

>>>	ltpoland.shape

(120,	11)

>>>	ltall	=	pd.concat([ltcameroon,

ltpoland])

>>>	ltall.country.value_counts()

Poland						120

Cameroon					48

Name:	country,	dtype:	int64

4.	 Concatenate	all	the	country	data	files.

Loop	through	all	the	filenames	in	the	folder	that	contains	the	CSV	files	for

each	country.	Use	the	endswith	method	to	check	that	the	filename	has

a	CSV	file	extension.	Use	read_csv	to	create	a	new	DataFrame	and

print	out	the	number	of	rows.	Use	concat	to	append	the	rows	of	the	new
DataFrame	to	the	rows	that	have	already	been	appended.	Finally,	display	any
columns	that	are	missing	in	the	most	recent	DataFrame,	or	that	are	in	the	most

recent	DataFrame	but	not	the	previous	ones.	Notice	that	the	ltoman

DataFrame	is	missing	the	latabs	column:

>>>	directory	=	"data/ltcountry"

>>>	ltall	=	pd.DataFrame()

>>>

>>>	for	filename	in

os.listdir(directory):
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...			if	filename.endswith(".csv"):

...					fileloc	=

os.path.join(directory,

filename)

...					#	open	the	next	file

...					with	open(fileloc)	as	f:

...							ltnew	=

pd.read_csv(fileloc)

...							print(filename	+	"	has	"	+

str(ltnew.shape[0])	+	"	rows.")

...							ltall	=	pd.concat([ltall,

ltnew])

...							#	check	for	differences	in

columns

...							columndiff	=

ltall.columns.symmetric_difference(ltnew.columns)

...							if	(not	columndiff.empty):

...									print("",	"Different

column	names	for:",	filename,\

...											columndiff,	"",

sep="\n")

...

ltpoland.csv	has	120	rows.

ltjapan.csv	has	1800	rows.
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ltindia.csv	has	1056	rows.

ltbrazil.csv	has	1104	rows.

ltcameroon.csv	has	48	rows.

ltoman.csv	has	288	rows.

Different	column	names	for:

ltoman.csv

Index(['latabs'],	dtype='object')

ltmexico.csv	has	852	rows.

5.	 Show	some	of	the	combined	data:

>>>

ltall[['country','station','month','temperature','latitude']].sample(5,

random_state=1)

				country					station		month		temperature		latitude

597			Japan						MIYAKO						4											24								25

937			India		JHARSUGUDA					11											25								22

616		Mexico			TUXPANVER						9											29								21

261			India				MO_AMINI						3											29								11

231				Oman								IBRA					10											29								23

6.	 Check	the	values	in	the	concatenated	data.

Notice	that	the	values	for	latabs	for	Oman	are	all	missing.	This	is

because	latabs	is	missing	in	the	DataFrame	for	Oman	(latabs	is
the	absolute	value	of	the	latitude	for	each	station):
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>>>

ltall.country.value_counts().sort_index()

Brazil						1104

Cameroon						48

India							1056

Japan							1800

Mexico							852

Oman									288

Poland							120

Name:	country,	dtype:	int64

>>>

>>>

ltall.groupby(['country']).agg({'temperature':

['min','mean',\

...			'max','count'],'latabs':

['min','mean','max','count']})

									temperature																latabs															

																	min	mean	max

count				min	mean	max	count

country																																																		

Brazil												12			25		34			969						0			14		34		1104

Cameroon										22			27		36				34						4				8		10				48

India														2			26		37		1044						8			21		34		1056

Japan													-7			15		30		1797					24			36		45		1800
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Mexico													7			23		34			806					15			22		32			852

Oman														12			28		38			205				nan		nan

nan					0

Poland												-4			10		23			120					50			52		55			120

7.	 Fix	the	missing	values.

Set	the	value	of	latabs	to	the	value	of	latitude	for	Oman.	(All

of	the	latitude	values	for	stations	in	Oman	are	above	the	equator	and
positive.	In	the	Global	Historical	Climatology	Network	integrated	database,

latitude	values	above	the	equator	are	positive,	while	all	the	latitude
values	below	the	equator	are	negative).	Do	this	as	follows:

>>>	ltall['latabs']	=

np.where(ltall.country=="Oman",

ltall.latitude,	ltall.latabs)

>>>

>>>

ltall.groupby(['country']).agg({'temperature':

['min','mean',\

...			'max','count'],'latabs':

['min','mean','max','count']})

									temperature																latabs															

																	min	mean	max

count				min	mean	max	count

country																																																		

Brazil												12			25		34			969						0			14		34		1104
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Cameroon										22			27		36				34						4				8		10				48

India														2			26		37		1044						8			21		34		1056

Japan													-7			15		30		1797					24			36		45		1800

Mexico													7			23		34			806					15			22		32			852

Oman														12			28		38			205					17			22		26			288

Poland												-4			10		23			120					50			52		55			120

With	that,	we	have	combined	the	data	for	the	seven	CSV	files	we	found	in	the
selected	folder.	We	have	also	confirmed	that	we	have	appended	the	correct
number	of	rows,	identified	columns	that	are	missing	in	some	files,	and	fixed
missing	values.

How	it	works...
We	passed	a	list	of	pandas	DataFrames	to	the	pandas	concat	function	in
step	3.	The	rows	from	the	second	DataFrame	were	appended	to	the	bottom	of	the
first	DataFrame.	If	we	had	listed	a	third	DataFrame,	those	rows	would	have	been
appended	to	the	combined	rows	of	the	first	two	DataFrames.	Before

concatenating,	we	used	the	shape	attribute	to	check	the	number	of	rows.	We
confirmed	that	the	concatenated	DataFrame	contains	the	expected	number	of
rows	for	each	country.

We	could	have	concatenated	data	from	all	the	CSV	files	in	the

ltcountry	subfolder	by	loading	each	file	and	then	adding	it	to	the	list

we	passed	to	concat.	However,	this	is	not	always	practical.	If	we	want	to

load	and	then	read	more	than	a	few	files,	we	can	get	Python's	os	module	to
find	the	files.	In	step	4,	we	looked	for	all	the	CSV	files	in	a	specified	folder,

Telegram Channel @nettrain



loaded	each	file	that	was	found	into	memory,	and	then	appended	the	rows	of
each	file	to	a	DataFrame.	We	printed	the	number	of	rows	for	each	data	file	we
loaded	so	that	we	could	check	those	numbers	against	the	totals	in	the
concatenated	data	later.	We	also	identified	any	DataFrames	with	different

columns	compared	to	the	others.	We	used	value_counts	in	step	6	to
confirm	that	there	was	the	right	number	of	rows	for	each	country.

The	pandas	groupby	method	can	be	used	to	check	column	values	from
each	of	the	original	DataFrames.	We	group	by	country	since	that	identifies	the
rows	from	each	of	the	original	DataFrames	–	all	the	rows	for	each	DataFrame
have	the	same	value	for	country.	(It	is	helpful	to	always	have	a	column	that
identifies	the	original	DataFrames	in	the	concatenated	DataFrame,	even	if	that
information	is	not	needed	for	subsequent	analysis.)	In	step	6,	this	helped	us

notice	that	there	are	no	values	for	the	latabs	column	for	Oman.	We

replaced	the	missing	values	for	latabs	for	Oman	in	step	7.

See	also
We	went	over	the	powerful	pandas	groupby	method	in	some	detail	in
Chapter	7,	Fixing	Messy	Data	when	Aggregating.

We	examined	NumPy's	where	function	in	Chapter	6,	Cleaning	and
Exploring	Data	with	Series	Operations.

Doing	one-to-one	merges
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The	remainder	of	this	chapter	will	explore	combining	data	horizontally;	that	is,
merging	columns	from	a	data	table	with	columns	from	another	data	table.
Borrowing	from	SQL	development,	we	typically	talk	about	such	operations	as
join	operations:	left	joins,	right	joins,	inner	joins,	and	outer	joins.	This	recipe
examines	one-to-one	merges,	where	the	merge-by	values	are	unduplicated	in
both	files.	Subsequent	recipes	will	demonstrate	one-to-many	merges,	where	the
merge-by	values	are	duplicated	on	the	right	data	table;	and	many-to-many
merges,	where	merge-by	values	are	duplicated	on	both	the	left	and	right	data
tables.

We	often	speak	of	left	and	right	sides	of	a	merge,	a	convention	that	we	will
follow	throughout	this	chapter.	But	this	is	of	no	real	consequence,	other	than	for
clarity	of	exposition.	We	can	accomplish	exactly	the	same	thing	with	a	merge	if
A	were	the	left	data	table	and	B	were	the	right	data	table	and	vice	versa.

I	am	using	the	expressions	merge-by	column	and	merge-by	value	in	this	chapter,
rather	than	key	column	or	index	column.	This	avoids	possible	confusion	with
pandas	index	alignment.	An	index	may	be	used	as	the	merge-by	column,	but
other	columns	may	also	be	used.	I	also	want	to	avoid	relying	on	relational
database	concepts	such	as	primary	or	foreign	keys	in	this	discussion.	It	is	helpful
to	be	aware	of	which	data	columns	function	as	primary	or	foreign	keys	when
we're	extracting	data	from	relational	systems,	and	we	should	take	this	into
account	when	setting	indexes	in	pandas.	But	the	merging	we	do	for	most	data
cleaning	projects	often	goes	beyond	these	keys.

In	the	straightforward	case	of	a	one-to-one	merge,	each	row	in	the	left	data	table
is	matched	with	one	–	and	only	one	–	row	on	the	right	data	table,	according	to
the	merge-by	value.	What	happens	when	a	merge-by	value	appears	on	one,	but
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not	the	other,	data	table	is	determined	by	the	type	of	join	that's	specified.	The
following	diagram	illustrates	the	four	different	types	of	joins:

Figure	8.1	–	A	diagram	illustrating	the	four	different	types	of	joins

When	two	data	tables	are	merged	with	an	inner	join,	rows	are	retained	when	the
merge-by	values	appear	in	both	the	left	and	right	data	tables.	This	is	the
intersection	of	the	left	and	right	data	tables,	represented	by	B	in	the	preceding
diagram.	Outer	joins	return	all	rows;	that	is,	rows	where	the	merge-by	values
appear	in	both	data	tables,	rows	where	those	values	appear	in	the	left	data	table
but	not	the	right,	and	rows	where	those	values	appear	in	the	right	but	not	the	left
–	B,	A,	and	C,	respectively.	This	is	known	as	the	union.	Left	joins	return	rows
where	the	merge-by	values	are	present	on	the	left	data	table,	regardless	of
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whether	they	are	present	on	the	right	data	table.	This	is	A	and	B.	Right	joins
return	rows	where	the	merge-by	values	are	present	on	the	right	data	table,
regardless	of	whether	they	are	present	on	the	left	data	table.

Missing	values	may	result	from	outer	joins,	left	joins,	or	right	joins.	This	is
because	the	returned	merged	data	table	will	have	missing	values	for	columns
when	the	merge-by	value	is	not	found.	For	example,	when	performing	a	left	join,
there	may	be	merge-by	values	from	the	left	dataset	that	do	not	appear	on	the
right	dataset.	In	this	case,	the	columns	from	the	right	dataset	will	all	be	missing.
(I	say	may	here	because	it	is	possible	to	do	an	outer,	left,	or	right	join	that	returns
the	same	results	as	an	inner	join	because	the	same	merge-by	values	appear	on
both	sides.	Sometimes,	a	left	join	is	done	so	that	we're	certain	that	all	the	rows
on	the	left	dataset,	and	only	those	rows,	are	returned).

We	will	look	at	all	four	types	of	joins	in	this	recipe.

Getting	ready
We	will	work	with	two	files	from	the	National	Longitudinal	Survey	(NLS).
Both	files	contain	one	row	per	person.	One	contains	employment,	educational
attainment,	and	income	data,	while	the	other	file	contains	data	on	the	income	and
educational	attainment	of	the	respondents'	parents.

DATA	NOTE
The	NLS	is	conducted	by	the	United	States	Bureau	of	Labor	Statistics.	It	is
available	for	public	use	at	https://www.nlsinfo.org/investigator/pages/search.
The	survey	started	with	a	cohort	of	individuals	in	1997	who	were	born	between
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1980	and	1985,	with	annual	follow-ups	each	year	through	2017.	I	extracted
fewer	than	100	variables	from	the	hundreds	available	from	this	rich	data	source.

How	to	do	it...
In	this	recipe,	we	will	perform	left,	right,	inner,	and	outer	joins	on	two
DataFrames	that	have	one	row	for	each	merge-by	value.	Let's	get	started:

1.	 Import	pandas	and	load	the	two	NLS	DataFrames:

>>>	import	pandas	as	pd

>>>	nls97	=

pd.read_csv("data/nls97f.csv")

>>>	nls97.set_index("personid",

inplace=True)

>>>	nls97add	=

pd.read_csv("data/nls97add.csv")

2.	 Look	at	some	of	the	NLS	data:

>>>	nls97.head()

										gender		birthmonth		birthyear		...						colenrfeb17		\

personid																																	...																				

100061				Female											5							1980		...		1.

Not	enrolled			

100139						Male											9							1983		...		1.

Not	enrolled			
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100284						Male										11							1984		...		1.

Not	enrolled			

100292						Male											4							1982		...														NaN			

100583						Male											1							1980		...		1.

Not	enrolled			

														colenroct17		originalid		

personid																															

100061				1.	Not

enrolled								8245		

100139				1.	Not

enrolled								3962		

100284				1.	Not

enrolled								3571		

100292																NaN								2979		

100583				1.	Not

enrolled								8511		

>>>	nls97.shape

(8984,	89)

>>>	nls97add.head()

			originalid		motherage		parentincome		fatherhighgrade		motherhighgrade

0											1									26												-3															16																8

1											2									19												-4															17															15

2											3									26									63000															-3															12

3											4									33									11700															12															12
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4											5									34												-3															12															12

>>>	nls97add.shape

(8984,	5)

3.	 Check	that	the	number	of	unique	values	for	originalid	is	equal	to
the	number	of	rows.

4.	 We	will	use	originalid	for	our	merge-by	column	later:

>>>

nls97.originalid.nunique()==nls97.shape[0]

True

>>>

nls97add.originalid.nunique()==nls97add.shape[0]

True

5.	 Create	some	mismatched	IDs.

Unfortunately,	the	NLS	data	is	a	little	too	clean	for	our	purposes.	Due	to	this,

we	will	mess	up	a	couple	of	values	for	originalid.

originalid	is	the	last	column	in	the	nls97	file	and	the	first

column	in	the	nls97add	file:

>>>	nls97	=

nls97.sort_values('originalid')

>>>	nls97add	=

nls97add.sort_values('originalid')

>>>	nls97.iloc[0:2,	-1]	=

nls97.originalid+10000
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>>>	nls97.originalid.head(2)

personid

135335				10001

999406				10002

Name:	originalid,	dtype:	int64

>>>	nls97add.iloc[0:2,	0]	=

nls97add.originalid+20000

>>>	nls97add.originalid.head(2)

0				20001

1				20002

Name:	originalid,	dtype:	int64

6.	 Use	join	to	perform	a	left	join.

nls97	is	the	left	DataFrame	and	nls97add	is	the	right	DataFrame

when	we	use	join	in	this	way.	Show	the	values	for	the	mismatched	IDs.
Notice	that	the	values	for	the	columns	from	the	right	DataFrame	are	all
missing	when	there	is	no	matching	ID	on	that	DataFrame	(the

orignalid	values	10001	and	10002	appear	on	the	left
DataFrame	but	not	on	the	right	DataFrame):

>>>	nlsnew	=

nls97.join(nls97add.set_index(['originalid']))

>>>

nlsnew.loc[nlsnew.originalid>9999,

['originalid','gender','birthyear','motherage','parentincome']]

										originalid		gender		birthyear		motherage		parentincome
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personid																																																								

135335									10001		Female							1981								nan											nan

999406									10002				Male							1982								nan											nan

7.	 Perform	a	left	join	with	merge.

The	first	DataFrame	is	the	left	DataFrame,	while	the	second	DataFrame	is	the

right	DataFrame.	Use	the	on	parameter	to	indicate	the	merge-by	column.	Set

the	value	of	the	how	parameter	to	"left"	to	do	a	left	join.	We	get	the

same	results	that	we	get	when	using	join,	other	than	with	the	index:

>>>	nlsnew	=	pd.merge(nls97,

nls97add,	on=['originalid'],

how="left")

>>>

nlsnew.loc[nlsnew.originalid>9999,

['originalid','gender','birthyear','motherage','parentincome']]

			originalid		gender		birthyear		motherage		parentincome

0							10001		Female							1981								nan											nan

1							10002				Male							1982								nan											nan

8.	 Perform	a	right	join.

With	a	right	join,	the	values	from	the	left	DataFrame	are	missing	when	there	is
no	matching	ID	on	the	left	DataFrame:

>>>	nlsnew	=	pd.merge(nls97,

nls97add,	on=['originalid'],

how="right")
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>>>

nlsnew.loc[nlsnew.originalid>9999,

['originalid','gender','birthyear','motherage','parentincome']]

						originalid

gender		birthyear		motherage		parentincome

8982							20001				NaN								nan									26												-3

8983							20002				NaN								nan									19												-4

9.	 Perform	an	inner	join.

None	of	the	mismatched	IDs	(that	have	values	over	10000)	appear	after
the	inner	join.	This	is	because	they	do	not	appear	on	both	DataFrames:

>>>	nlsnew	=	pd.merge(nls97,

nls97add,	on=['originalid'],

how="inner")

>>>

nlsnew.loc[nlsnew.originalid>9999,

['originalid','gender','birthyear','motherage','parentincome']]

Empty	DataFrame

Columns:	[originalid,	gender,

birthyear,	motherage,

parentincome]

Index:	[]

10.	 Perform	an	outer	join.

This	retains	all	the	rows,	so	rows	with	merge-by	values	in	the	left	DataFrame

but	not	in	the	right	are	retained	(originalid	values	10001	and
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10002),	and	rows	with	merge-by	values	in	the	right	DataFrame	but	not	in

the	left	are	also	retained	(originalid	values	20001	and

20002):

>>>	nlsnew	=	pd.merge(nls97,

nls97add,	on=['originalid'],

how="outer")

>>>

nlsnew.loc[nlsnew.originalid>9999,

['originalid','gender','birthyear','motherage','parentincome']]

						originalid		gender		birthyear		motherage		parentincome

0										10001		Female						1,981								nan											nan

1										10002				Male						1,982								nan											nan

8984							20001					NaN								nan									26												-3

8985							20002					NaN								nan									19												-4

11.	 Create	a	function	to	check	for	ID	mismatches.

The	function	takes	a	left	and	right	DataFrame,	as	well	as	a	merge-by	column.
It	perform	an	outer	join	because	we	want	to	see	which	merge-by	values	are
present	in	either	DataFrame,	or	both	of	them:

>>>	def	checkmerge(dfleft,	dfright,

idvar):

...			dfleft['inleft']	=	"Y"

...			dfright['inright']	=	"Y"

...			dfboth	=

pd.merge(dfleft[[idvar,'inleft']],\
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...					dfright[[idvar,'inright']],

on=[idvar],	how="outer")

...			dfboth.fillna('N',

inplace=True)

...			print(pd.crosstab(dfboth.inleft,

dfboth.inright))

...

>>>	checkmerge(nls97,nls97add,

"originalid")

inright		N					Y

inleft										

N								0					2

Y								2		8982

With	that,	we	have	demonstrated	how	to	perform	the	four	types	of	joins	with	a
one-to-one	merge.

How	it	works...
One-to-one	merges	are	fairly	straightforward.	The	merge-by	column(s)	only
appear	once	on	the	left	and	right	DataFrames.	However,	some	merge-by	column
values	may	appear	on	only	one	DataFrame.	This	is	what	makes	the	type	of	join
important.	If	all	merge-by	column	values	appeared	on	both	DataFrames,	then	a
left	join,	right	join,	inner	join,	or	outer	join	would	return	the	same	result.	We
took	a	look	at	the	two	DataFrames	in	the	first	few	steps.	In	step	3,	we	confirmed
that	the	number	of	unique	values	for	the	merge-by	column
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(originalid)	is	equal	to	the	number	of	rows	in	both	DataFrames.	This
tells	us	that	we	will	be	doing	a	one-to-one	merge.

If	the	merge-by	column	is	the	index,	then	the	easiest	way	to	perform	a	left	join	is

to	use	the	join	DataFrame	method.	We	did	this	in	step	5.	We	passed	the	right

DataFrame,	after	setting	the	index,	to	the	join	method	of	the	left	DataFrame.
(The	index	has	already	been	set	for	the	left	DataFrame).	The	same	result	was

returned	when	we	performed	a	left	join	using	the	pandas	merge	function	in

step	6.	We	used	the	how	parameter	to	specify	a	left	join	and	indicated	the

merge-by	column	using	on.	The	value	that	we	passed	to	on	can	be	any
column(s)	in	the	DataFrame.

In	steps	7	to	9,	we	performed	the	right,	inner,	and	outer	joins,	respectively.	This

is	specified	by	the	how	value,	which	is	the	only	part	of	the	code	that	is
different	across	these	steps.

The	simple	checkmerge	function	we	created	in	step	10	counted	the
number	of	rows	with	merge-by	column	values	on	one	DataFrame	but	not	the
other,	and	the	number	of	values	on	both.	Passing	copies	of	the	two	DataFrames
to	this	function	tells	us	that	two	rows	are	in	the	left	DataFrame	and	not	in	the
right,	two	rows	are	in	the	right	DataFrame	but	not	the	left,	and	8,982	rows	are	in
both.

There's	more...
You	should	run	a	function	similar	to	the	checkmerge	function	we
created	in	step	10	before	you	do	any	non-trivial	merge	–	which,	in	my	opinion,	is
pretty	much	all	merges.
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The	merge	function	is	more	flexible	than	the	examples	I	have	used	in	this
recipe	suggest.	For	example,	in	step	6,	we	did	not	have	to	specify	the	left
DataFrame	as	the	first	parameter.	I	could	have	indicated	the	left	and	right
DataFrames	explicitly,	like	so:

>>>	nlsnew	=	pd.merge(right=nls97add,

left=nls97,	on=['originalid'],

how="left")

We	can	also	specify	different	merge-by	columns	for	the	left	and	right

DataFrames	by	using	left_on	and	right_on	instead	of	on:

>>>	nlsnew	=	pd.merge(nls97,	nls97add,

left_on=['originalid'],

right_on=['originalid'],

how="left")

The	flexibility	of	the	merge	function	makes	it	a	great	tool	any	time	we	need
to	combine	data	horizontally.

Using	mult iple 	merge-by
columns
The	same	logic	we	used	to	perform	one-to-one	merges	with	one	merge-by
column	applies	to	merges	we	perform	with	multiple	merge-by	columns.	Inner,
outer,	left,	and	right	joins	work	the	same	way	when	you	have	two	or	more
merge-by	columns.	We	will	demonstrate	this	in	this	recipe.
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Getting	ready
We	will	work	with	the	NLS	data	in	this	recipe,	specifically	weeks	worked	and
college	enrollment	from	2000	through	2004.	Both	the	weeks	worked	and	college
enrollment	files	contain	one	row	per	person,	per	year.

How	to	do	it...
We	will	continue	this	recipe	with	one-to-one	merges,	but	this	time	with	multiple
merge-by	columns	on	each	DataFrame.	Let's	get	started:

1.	 Import	pandas	and	load	the	NLS	weeks	worked	and	college	enrollment
data:

>>>	import	pandas	as	pd

>>>	nls97weeksworked	=

pd.read_csv("data/nls97weeksworked.csv")

>>>	nls97colenr	=

pd.read_csv("data/nls97colenr.csv")

2.	 Look	at	some	of	the	NLS	weeks	worked	data:

>>>	nls97weeksworked.sample(10,

random_state=1)

							originalid		year		weeksworked

32923								7199		2003										0.0

14214								4930		2001									52.0

2863									4727		2000									13.0
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9746									6502		2001										0.0

2479									4036		2000									28.0

39435								1247		2004									52.0

36416								3481		2004									52.0

6145									8892		2000									19.0

5348									8411		2000										0.0

24193								4371		2002									34.0

>>>	nls97weeksworked.shape

(44920,	3)

>>>

nls97weeksworked.originalid.nunique()

8984

3.	 Look	at	some	of	the	NLS	college	enrollment	data:

>>>	nls97colenr.sample(10,

random_state=1)

							originalid		year														colenr

32923								7199		2003					1.	Not

enrolled

14214								4930		2001					1.	Not

enrolled

2863									4727		2000																	NaN

9746									6502		2001					1.	Not

enrolled
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2479									4036		2000					1.	Not

enrolled

39435								1247		2004			3.	4-year

college

36416								3481		2004					1.	Not

enrolled

6145									8892		2000					1.	Not

enrolled

5348									8411		2000					1.	Not

enrolled

24193								4371		2002		2.	2-year

college

>>>	nls97colenr.shape

(44920,	3)

>>>	nls97colenr.originalid.nunique()

8984

4.	 Check	for	unique	values	in	the	merge-by	columns.

We	get	the	same	number	of	merge-by	column	value	combinations	(44,920)	as
there	are	number	of	rows	in	both	DataFrames:

>>>

nls97weeksworked.groupby(['originalid','year'])\

...			['originalid'].count().shape

(44920,)

>>>
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>>>

nls97colenr.groupby(['originalid','year'])\

...			['originalid'].count().shape

(44920,)

5.	 Check	for	mismatches	in	the	merge-by	columns:

>>>	def	checkmerge(dfleft,	dfright,

idvar):

...			dfleft['inleft']	=	"Y"

...			dfright['inright']	=	"Y"

...			dfboth	=	pd.merge(dfleft[idvar

+	['inleft']],\

...					dfright[idvar	+	['inright']],

on=idvar,	how="outer")

...			dfboth.fillna('N',

inplace=True)

...			print(pd.crosstab(dfboth.inleft,

dfboth.inright))

...

>>>

checkmerge(nls97weeksworked.copy(),nls97colenr.copy(),

['originalid','year'])

inright						Y

inleft								

Y								44920
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6.	 Perform	a	merge	with	multiple	merge-by	columns:

>>>	nlsworkschool	=

pd.merge(nls97weeksworked,

nls97colenr,	on=

['originalid','year'],

how="inner")

>>>	nlsworkschool.shape

(44920,	4)

>>>	nlsworkschool.sample(10,

random_state=1)

							originalid		year		weeksworked														colenr

32923								7199		2003												0					1.

Not	enrolled

14214								4930		2001											52					1.

Not	enrolled

2863									4727		2000											13																	NaN

9746									6502		2001												0					1.

Not	enrolled

2479									4036		2000											28					1.

Not	enrolled

39435								1247		2004											52			3.

4-year	college

36416								3481		2004											52					1.

Not	enrolled
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6145									8892		2000											19					1.

Not	enrolled

5348									8411		2000												0					1.

Not	enrolled

24193								4371		2002											34		2.

2-year	college

These	steps	demonstrate	that	the	syntax	for	running	merges	changes	very	little
when	there	are	multiple	merge-by	columns.

How	it	works...
Every	person	in	the	NLS	data	has	five	rows	for	both	the	weeks	worked	and
college	enrollment	DataFrames,	with	one	for	each	year	between	2000	and	2004.

In	step	3,	we	saw	that	there	is	a	row	even	when	the	colenr	value	is
missing.	Both	files	contain	44,920	rows	with	8,984	unique	individuals	(indicated

by	originalid).	This	all	makes	sense	(8,984*5=44,920).

Step	4	confirmed	that	the	combination	of	columns	we	will	be	using	for	the
merge-by	columns	will	not	be	duplicated,	even	if	individuals	are	duplicated.
Each	person	has	only	one	row	for	each	year.	This	means	that	merging	the	weeks
worked	and	college	enrollment	data	will	be	a	one-to-one	merge.	In	step	5,	we
checked	to	see	whether	there	were	any	individual	and	year	combinations	that
were	in	one	DataFrame	but	not	the	other.	There	were	none.

Finally,	we	were	ready	to	do	the	merge	in	step	6.	We	set	the	on	parameter	to	a

list	(['originalid','year'])	to	tell	the	merge	function	to
use	both	columns	in	the	merge.	We	specified	an	inner	join,	even	though	we
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would	get	the	same	results	with	any	join.	This	is	because	the	same	merge-by
values	are	present	in	both	files.

There's	more...
All	the	logic	and	potential	issues	in	merging	data	that	we	discussed	in	the
previous	recipe	apply,	regardless	of	whether	we	are	merging	with	one	merge-by
column	or	several.	Inner,	outer,	right,	and	left	joins	work	the	same	way.	We	can
still	calculate	the	number	of	rows	that	will	be	returned	before	doing	the	merge.
However,	we	still	need	to	check	for	the	number	of	unique	merge-by	values	and
for	matches	between	the	DataFrames.

If	you	have	worked	with	recipes	in	earlier	chapters	that	used	the	NLS	weeks
worked	and	college	enrollment	data,	you	probably	noticed	that	it	is	structured
differently	here.	In	previous	recipes,	there	was	one	row	per	person	with	multiple
columns	for	weeks	worked	and	college	enrollment,	representing	weeks	worked
and	college	enrollment	for	multiple	years.	For	example,

weeksworked01	is	the	number	of	weeks	worked	in	2001.	The
structure	of	the	weeks	worked	and	college	enrollment	DataFrames	we	used	in
this	recipe	is	considered	tidier	than	the	NLS	DataFrame	we	used	in	earlier
recipes.	We'll	learn	how	to	tidy	data	in	Chapter	9,	Tidying	and	Reshaping	Data.

Doing	one-to-many	merges
In	one-to-many	merges,	there	are	unduplicated	values	for	the	merge-by	column
or	columns	on	the	left	data	table	and	duplicated	values	for	those	columns	on	the
right	data	table.	For	these	merges,	we	usually	do	either	an	inner	join	or	a	left
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join.	Which	join	we	use	matters	when	merge-by	values	are	missing	on	the	right
data	table.	When	performing	a	left	join,	all	the	rows	that	would	be	returned	from
an	inner	join	will	be	returned,	plus	one	row	for	each	merge-by	value	present	on
the	left	dataset,	but	not	the	right.	For	those	additional	rows,	values	for	all	the
columns	on	the	right	dataset	will	be	missing	in	the	resulting	merged	data.	This
relatively	straightforward	fact	ends	up	mattering	a	fair	bit	and	should	be	thought
through	carefully	before	you	code	a	one-to-many	merge.

This	is	where	I	start	to	get	nervous,	and	where	I	think	it	makes	sense	to	be	a	little
nervous.	When	I	do	workshops	on	data	cleaning,	I	pause	before	starting	this
topic	and	say,	"do	not	start	a	one-to-many	merge	until	you	are	able	to	bring	a
friend	with	you."

I	am	joking,	of	course…	mostly.	The	point	I	am	trying	to	make	is	that	something
should	cause	us	to	pause	before	doing	a	non-trivial	merge,	and	one-to-many
merges	are	never	trivial.	Too	much	about	the	structure	of	our	data	can	change.

Specifically,	there	are	several	things	we	want	to	know	about	the	two	DataFrames
we	will	be	merging	before	starting.	First,	we	should	know	what	columns	make
sense	as	merge-by	columns	on	each	DataFrame.	They	do	not	have	to	be	the	same
columns.	Indeed,	one-to-many	merges	are	often	used	to	recapture	relationships
from	an	enterprise	database	system,	and	they	are	consistent	with	the	primary
keys	and	foreign	keys	used,	which	may	have	different	names.	(The	primary	key
on	the	left	data	table	is	often	linked	to	the	foreign	key	on	the	right	data	table	in	a
relational	database.)	Second,	we	should	know	what	kind	of	join	we	will	be	using
and	why.

Third,	we	should	know	how	many	rows	are	on	both	data	tables.	Fourth,	we
should	have	a	good	idea	of	how	many	rows	will	be	retained	based	on	the	type	of
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join,	the	number	of	rows	in	each	dataset,	and	preliminary	checks	on	how	many
of	the	merge-by	values	will	match.	If	all	the	merge-by	values	are	present	on	both
datasets	or	if	we	are	doing	an	inner	join,	then	the	number	of	rows	will	be	equal
to	the	number	of	rows	of	the	right	dataset	of	a	one-to-many	merge.	But	it	is	often
not	as	straightforward	as	that.	We	frequently	perform	left	joins	with	one-to-many
merges.	With	these	types	of	joins,	the	number	of	retained	rows	will	be	equal	to
the	number	of	rows	in	the	right	dataset	with	a	matching	merge-by	value,	plus	the
number	of	rows	in	the	left	dataset	with	non-matching	merge-by	values.

This	should	be	clearer	once	we've	worked	through	the	examples	in	this	recipe.

Getting	ready
We	will	be	working	with	data	based	on	weather	stations	from	the	Global
Historical	Climatology	Network	integrated	database	for	this	recipe.	One	of	the
DataFrames	contains	one	row	for	each	country.	The	other	contains	one	row	for
each	weather	station.	There	are	typically	many	weather	stations	for	each	country.

How	to	do	it…
In	this	recipe,	we	will	do	a	one-to-many	merge	of	data	for	countries,	which
contains	one	row	per	country,	and	a	merge	for	the	weather	station	data,	which
contains	multiple	stations	for	each	country.	Let's	get	started:

1.	 Import	pandas	and	load	the	weather	station	and	country	data:

>>>	import	pandas	as	pd
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>>>	countries	=

pd.read_csv("data/ltcountries.csv")

>>>	locations	=

pd.read_csv("data/ltlocations.csv")

2.	 Set	the	index	for	the	weather	station	(locations)	and	country	data.

Confirm	that	the	merge-by	values	for	the	countries	DataFrame	are
unique:

>>>

countries.set_index(['countryid'],

inplace=True)

>>>

locations.set_index(['countryid'],

inplace=True)

>>>	countries.head()

																								country

countryid																						

AC										Antigua	and	Barbuda

AE									United	Arab	Emirates

AF																		Afghanistan

AG																						Algeria

AJ																			Azerbaijan

>>>

countries.index.nunique()==countries.shape[0]
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True

>>>

locations[['locationid','latitude','stnelev']].head(10)

												locationid		latitude		stnelev

countryid																																

AC									ACW00011604								58							18

AE									AE000041196								25							34

AE									AEM00041184								26							31

AE									AEM00041194								25							10

AE									AEM00041216								24								3

AE									AEM00041217								24							27

AE									AEM00041218								24						265

AF									AF000040930								35				3,366

AF									AFM00040911								37						378

AF									AFM00040938								34						977

3.	 Perform	a	left	join	of	countries	and	locations	using	join:

>>>	stations	=

countries.join(locations)

>>>

stations[['locationid','latitude','stnelev','country']].head(10)

												locationid		latitude		stnelev															country

countryid																																																						
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AC									ACW00011604								58							18			Antigua

and	Barbuda

AE									AE000041196								25							34		United

Arab	Emirates

AE									AEM00041184								26							31		United

Arab	Emirates

AE									AEM00041194								25							10		United

Arab	Emirates

AE									AEM00041216								24								3		United

Arab	Emirates

AE									AEM00041217								24							27		United

Arab	Emirates

AE									AEM00041218								24						265		United

Arab	Emirates

AF									AF000040930								35				3,366											Afghanistan

AF									AFM00040911								37						378											Afghanistan

AF									AFM00040938								34						977											Afghanistan

4.	 Check	that	the	merge-by	column	matches.

First,	reload	the	DataFrames	since	we	have	made	some	changes.	The

checkmerge	function	shows	that	there	are	27,472	rows	with	merge-by

values	(from	countryid)	in	both	DataFrames	and	two	in

countries	(the	left	DataFrame)	but	not	in	locations.	This
indicates	that	an	inner	join	would	return	27,472	rows	and	a	left	join	would
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return	27,474	rows.	The	last	statement	in	the	function	identifies	the

countryid	values	that	appear	in	one	DataFrame	but	not	the	other:

>>>	countries	=

pd.read_csv("data/ltcountries.csv")

>>>	locations	=

pd.read_csv("data/ltlocations.csv")

>>>

>>>	def	checkmerge(dfleft,	dfright,

idvar):

...			dfleft['inleft']	=	"Y"

...			dfright['inright']	=	"Y"

...			dfboth	=

pd.merge(dfleft[[idvar,'inleft']],\

...					dfright[[idvar,'inright']],

on=[idvar],	how="outer")

...			dfboth.fillna('N',

inplace=True)

...			print(pd.crosstab(dfboth.inleft,

dfboth.inright))

...			print(dfboth.loc[(dfboth.inleft=='N')

|	(dfboth.inright=='N')])

...

>>>	checkmerge(countries.copy(),

locations.copy(),	"countryid")
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inright		N						Y

inleft											

N								0						1

Y								2		27472

						countryid	inleft	inright

9715									LQ						Y							N

13103								ST						Y							N

27474								FO						N							Y

5.	 Show	the	rows	in	one	file	but	not	the	other.

The	last	statement	in	the	previous	step	displays	the	two	values	of

countryid	in	countries	but	not	in	locations,	and

the	one	in	locations	but	not	in	countries:

>>>

countries.loc[countries.countryid.isin(["LQ","ST"])]

				countryid																								country

124								LQ		Palmyra	Atoll	[United

States]

195								ST																				Saint

Lucia

>>>

locations.loc[locations.countryid=="FO"]

							locationid		latitude		longitude		stnelev			station

countryid
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7363		FOM00006009								61									-7						102		AKRABERG								FO

6.	 Merge	the	locations	and	countries	DataFrames.

Perform	a	left	join.	Also,	count	the	number	of	missing	values	for	each	column,

where	merge-by	values	are	present	in	the	countries	data	but	not	in
the	weather	station	data:

>>>	stations	=	pd.merge(countries,

locations,	on=["countryid"],

how="left")

>>>

stations[['locationid','latitude','stnelev','country']].head(10)

				locationid		latitude		stnelev															country

0		ACW00011604								58							18			Antigua

and	Barbuda

1		AE000041196								25							34		United

Arab	Emirates

2		AEM00041184								26							31		United

Arab	Emirates

3		AEM00041194								25							10		United

Arab	Emirates

4		AEM00041216								24								3		United

Arab	Emirates

5		AEM00041217								24							27		United

Arab	Emirates

Telegram Channel @nettrain



6		AEM00041218								24						265		United

Arab	Emirates

7		AF000040930								35				3,366											Afghanistan

8		AFM00040911								37						378											Afghanistan

9		AFM00040938								34						977											Afghanistan

>>>	stations.shape

(27474,	7)

>>>

stations.loc[stations.countryid.isin(["LQ","ST"])].isnull().sum()

countryid					0

country							0

locationid				2

latitude						2

longitude					2

stnelev							2

station							2

dtype:	int64

The	one-to-many	merge	returns	the	expected	number	of	rows	and	new	missing
values.

How	it	works...
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In	step	2,	we	used	the	join	DataFrame	method	to	perform	a	left	join	of	the

countries	and	locations	DataFrames.	This	is	the	easiest	way

to	do	a	merge.	Since	the	join	method	uses	the	index	of	the	DataFrames	for
the	merge,	we	need	to	set	the	index	first.	We	then	passed	the	right	DataFrame	to

the	join	method	of	the	left	DataFrame.

Although	join	is	a	little	more	flexible	than	this	example	suggests	(you	can
specify	the	type	of	join,	for	example),	I	prefer	the	more	verbose	pandas

merge	function	for	all	but	the	simplest	of	merges.	I	can	be	confident	when

using	the	merge	function	that	all	the	options	I	need	are	available	to	me.
Before	we	could	do	the	merge,	we	had	to	do	some	checks.	We	did	this	in	step	4.
This	told	us	how	many	rows	to	expect	in	the	merged	DataFrame	if	we	were	to	do
an	inner	or	left	join;	there	would	be	27,472	or	27,474	rows,	respectively.

We	also	displayed	the	rows	with	merge-by	values	in	one	DataFrame	but	not	the
other.	If	we	are	going	to	do	a	left	join,	we	need	to	decide	what	to	do	with	the
missing	values	that	will	result	from	the	right	DataFrame.	In	this	case,	there	were
two	merge-by	values	that	were	not	found	on	the	right	DataFrame,	giving	us	two
missing	values	for	those	columns.

There's	more…
You	may	have	noticed	that	in	our	call	to	checkmerge,	we	passed	copies

of	the	countries	and	locations	DataFrames:

>>>	checkmerge(countries.copy(),

locations.copy(),	"countryid")
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We	use	copy	here	because	we	do	not	want	the	checkmerge	function
to	make	any	changes	to	our	original	DataFrames.

See	also
We	discussed	join	types	in	detail	in	the	Doing	one-to-one	merges	recipe.

Doing	many-to-many	merges
Many-to-many	merges	have	duplicate	merge-by	values	in	both	the	left	and	right
DataFrames.	We	should	only	rarely	need	to	do	a	many-to-many	merge.	Even
when	data	comes	to	us	in	that	form,	it	is	often	because	we	are	missing	the	central
file	in	multiple	one-to-many	relationships.	For	example,	there	are	donor,	donor
contributions,	and	donor	contact	information	data	tables,	and	the	last	two	files
contain	multiple	rows	per	donor.	However,	in	this	case,	we	do	not	have	access	to
the	donor	file,	which	has	a	one-to-many	relationship	with	both	the	contributions
and	contact	information	files.	This	happens	more	frequently	than	you	may	think.
People	sometimes	give	us	data	with	little	awareness	of	the	underlying	structure.
When	I	do	a	many-to-many	merge,	it	is	typically	because	I	am	missing	some	key
information	rather	than	because	that	was	how	the	database	was	designed.

Many-to-many	merges	return	the	Cartesian	product	of	the	merge-by	column
values.	So,	if	a	donor	ID	appears	twice	on	the	donor	contact	information	file	and
five	times	on	the	donor	contributions	file,	then	the	merge	will	return	10	rows.
The	problem	here	is	there	will	be	more	rows	in	the	returned	data,	but	this	does
not	make	sense	analytically.	In	this	example,	a	many-to-many	merge	will
duplicate	the	donor	contributions,	once	for	each	address.
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Often,	when	faced	with	a	potential	many-to-many	merge	situation,	the	solution	is
not	to	do	it.	Instead,	we	can	recover	the	implied	one-to-many	relationships.	With
the	donor	example,	we	could	remove	all	the	rows	except	for	the	most	recent
contact	information,	thus	ensuring	that	there	is	one	row	per	donor.	We	could	then
do	a	one-to-many	merge	with	the	donor	contributions	file.	But	we	are	not	always
able	to	avoid	doing	a	many-to-many	merge.	Sometimes,	we	must	produce	an
analytical	or	flat	file	that	keeps	all	of	the	data,	without	regard	for	duplication.
This	recipe	demonstrates	how	to	do	those	merges	when	that	is	required.

Getting	ready
We	will	work	with	data	based	on	the	Cleveland	Museum	of	Art's	collections.	We
will	use	two	CSV	files:	one	containing	each	media	citation	for	each	item	in	the
collection	and	another	containing	the	creator(s)	of	each	item.

TIP
The	Cleveland	Museum	of	Art	provides	an	API	for	public	access	to	this	data:
https://openaccess-api.clevelandart.org/.	Much	more	than	the	citations	and
creators	data	is	available	in	the	API.

How	to	do	it...
Follow	these	steps	to	complete	this	recipe:

1.	 Load	pandas	and	the	Cleveland	Museum	of	Art	(CMA)	collections
data:
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>>>	import	pandas	as	pd

>>>	cmacitations	=

pd.read_csv("data/cmacitations.csv")

>>>	cmacreators	=

pd.read_csv("data/cmacreators.csv")

2.	 Look	at	the	citations	data:

>>>	cmacitations.head(10)

						id																																											citation

0		92937		Milliken,	William	M.	"The

Second	Exhibition	of...

1		92937		Glasier,	Jessie	C.	"Museum

Gets	Prize-Winning	...

2		92937		"Cleveland	Museum	Acquires

Typical	Pictures	by...

3		92937		Milliken,	William	M.	"Two

Examples	of	Modern	P...

4		92937		<em>Memorial	Exhibition	of

the	Work	of	George	...

5		92937		The	Cleveland	Museum	of

Art.	<em>Handbook	of	t...

6		92937		Cortissoz,	Royal.

"Paintings	and	Prints	by	Geo...

7		92937		Isham,	Samuel,	and	Royal

Cortissoz.	<em>The	Hi...
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8		92937		Mather,	Frank	Jewett,

Charles	Rufus	Morey,	and...

9		92937		"Un	Artiste	Americain."

<em>L'illustration.</e...

>>>	cmacitations.shape

(11642,	2)

>>>	cmacitations.id.nunique()

935

3.	 Look	at	the	creators	data:

>>>	cmacreators.loc[:,

['id','creator','birth_year']].head(10)

							id																																						creator

birth_year

0			92937									George	Bellows

(American,	1882-

1925)							1882

1			94979		John	Singleton	Copley

(American,	1738-

1815)							1738

2		137259										Gustave	Courbet

(French,	1819-1877)							1819

3		141639		Frederic	Edwin	Church

(American,	1826-

1900)							1826
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4			93014												Thomas	Cole

(American,	1801-

1848)							1801

5		110180			Albert	Pinkham	Ryder

(American,	1847-

1917)							1847

6		135299										Vincent	van	Gogh

(Dutch,	1853-1890)							1853

7		125249										Vincent	van	Gogh

(Dutch,	1853-1890)							1853

8		126769											Henri	Rousseau

(French,	1844-1910)							1844

9		135382													Claude	Monet

(French,	1840-1926)							1840

>>>	cmacreators.shape

(737,	8)

>>>	cmacreators.id.nunique()

654

4.	 Show	duplicates	of	merge-by	values	in	the	citations	data.

5.	 There	are	174	media	citations	for	collection	item	148758:

>>>

cmacitations.id.value_counts().head(10)

148758				174

122351				116
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92937						98

123168					94

94979						93

149112					93

124245					87

128842					86

102578					84

93014						79

Name:	id,	dtype:	int64

6.	 Show	duplicates	of	the	merge-by	values	in	the	creators	data:

>>>

cmacreators.id.value_counts().head(10)

140001				4

149386				4

114537				3

149041				3

93173					3

142752				3

114538				3

146795				3

146797				3

142753				3

Name:	id,	dtype:	int64
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7.	 Check	the	merge.

Use	the	checkmerge	function	we	used	in	the	Doing	one-to-many
merges	recipe:

>>>	def	checkmerge(dfleft,	dfright,

idvar):

...			dfleft['inleft']	=	"Y"

...			dfright['inright']	=	"Y"

...			dfboth	=

pd.merge(dfleft[[idvar,'inleft']],\

...					dfright[[idvar,'inright']],

on=[idvar],	how="outer")

...			dfboth.fillna('N',

inplace=True)

...			print(pd.crosstab(dfboth.inleft,

dfboth.inright))

...

>>>	checkmerge(cmacitations.copy(),

cmacreators.copy(),	"id")

inright					N					Y

inleft													

N											0				46

Y								2579		9701

8.	 Show	a	merge-by	value	duplicated	in	both	DataFrames:
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>>>

cmacitations.loc[cmacitations.id==124733]

										id																																											citation

8963		124733		Weigel,	J.	A.	G.

<em>Catalog	einer	Sammlung

vo...

8964		124733		Winkler,	Friedrich.

<em>Die	Zeichnungen	Albrec...

8965		124733		Francis,	Henry	S.

"Drawing	of	a	Dead	Blue	Jay	...

8966		124733		Kurz,	Otto.	<em>Fakes:

A	Handbook	for	Collecto...

8967		124733		Minneapolis	Institute

of	Arts.	<em>Watercolors...

8968		124733		Pilz,	Kurt.	"Hans

Hoffmann:	Ein	Nürnberger	Dür...

8969		124733		Koschatzky,	Walter	and

Alice	Strobl.	<em>Düre...

8970		124733		Johnson,	Mark	M<em>.

Idea	to	Image:	Preparator...

8971		124733		Kaufmann,	Thomas

DaCosta.	<em>Drawings	from

th...

8972		124733		Koreny,	Fritz.

<em>Albrecht	Dürer	and	the
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ani...

8973		124733		Achilles-Syndram,

Katrin.	<em>Die	Kunstsammlun...

8974		124733		Schoch,	Rainer,	Katrin

Achilles-Syndram,	and	B...

8975		124733		DeGrazia,	Diane	and

Carter	E.	Foster.	<em>Mast...

8976		124733		Dunbar,	Burton	L.,	et

al.	<em>A	Corpus	of	Draw...

>>>

cmacreators.loc[cmacreators.id==124733,

['id','creator','birth_year','title']]

									id																																		creator

birth_year		\

449		124733							Albrecht	Dürer

(German,	1471-

1528)							1471			

450		124733		Hans	Hoffmann	(German,

1545/50-1591/92)				1545/50			

																title		

449		Dead	Blue	Roller		

450		Dead	Blue	Roller

9.	 Do	a	many-to-many	merge:
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>>>	cma	=	pd.merge(cmacitations,

cmacreators,	on=['id'],

how="outer")

>>>	cma['citation']	=

cma.citation.str[0:20]

>>>	cma['creator']	=

cma.creator.str[0:20]

>>>	cma.loc[cma.id==124733,

['citation','creator','birth_year']]

																		citation															creator

birth_year

9457		Weigel,	J.	A.	G.	<em		Albrecht

Dürer	(Germ							1471

9458		Weigel,	J.	A.	G.	<em		Hans

Hoffmann	(Germa				1545/50

9459		Winkler,	Friedrich.			Albrecht

Dürer	(Germ							1471

9460		Winkler,	Friedrich.			Hans

Hoffmann	(Germa				1545/50

9461		Francis,	Henry	S.	"D		Albrecht

Dürer	(Germ							1471

9462		Francis,	Henry	S.	"D		Hans

Hoffmann	(Germa				1545/50

9463		Kurz,	Otto.	<em>Fake		Albrecht

Dürer	(Germ							1471
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9464		Kurz,	Otto.	<em>Fake		Hans

Hoffmann	(Germa				1545/50

9465		Minneapolis	Institut		Albrecht

Dürer	(Germ							1471

9466		Minneapolis	Institut		Hans

Hoffmann	(Germa				1545/50

9467		Pilz,	Kurt.	"Hans	Ho		Albrecht

Dürer	(Germ							1471

9468		Pilz,	Kurt.	"Hans	Ho		Hans

Hoffmann	(Germa				1545/50

9469		Koschatzky,	Walter	a		Albrecht

Dürer	(Germ							1471

9470		Koschatzky,	Walter	a		Hans

Hoffmann	(Germa				1545/50

...	last	14	rows	removed	to	save

space

Now	that	I	have	taken	you	through	the	messiness	of	a	many-to-many	merge,	I'll
say	a	little	more	about	how	it	works.

How	it	works...
Step	2	told	us	that	there	were	11,642	citations	for	935	unique	IDs.	There	is	a
unique	ID	for	each	item	in	the	museum's	collection.	On	average,	each	item	has
12	media	citations	(11,642/935).	Step	3	told	us	that	there	are	737	creators	over
654	items,	so	there	is	only	one	creator	for	the	overwhelming	majority	of	pieces.
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But	the	fact	that	there	are	duplicated	IDs	(our	merge-by	value)	on	both	the

citations	and	creators	DataFrames	means	that	our	merge	will
be	a	many-to-many	merge.

Step	4	gave	us	a	sense	of	which	IDs	are	duplicated	on	the	citations
DataFrame.	Some	items	in	the	museum's	collection	have	more	than	80	citations.
It	is	worth	taking	a	closer	look	at	the	citations	for	those	items	to	see	whether	they
make	sense.	Step	5	showed	us	that	even	when	there	is	more	than	one	creator,
there	are	rarely	more	than	three.	In	step	6,	we	saw	that	most	IDs	have	rows	in

both	the	citations	file	and	the	creators	file,	but	a	fair	number

have	citations	rows	but	no	creators	rows.	We	will	lose	those
2,579	rows	if	we	do	an	inner	join	or	a	right	join,	but	not	if	we	do	a	left	join	or	an

outer	join.	(This	assumes	that	the	citations	DataFrame	is	the	left

DataFrame	and	the	creators	DataFrame	is	the	right	one.)

We	looked	at	an	ID	that	is	in	both	DataFrames	in	step	7	–	one	that	also	has
duplicate	IDs	in	both	DataFrames.	There	are	14	rows	for	this	collection	item	in

the	citations	DataFrame	and	two	in	the	creators	DataFrame.
This	will	result	in	28	rows	(2	*	14)	with	that	ID	in	the	merged	DataFrame.	The

citations	data	will	be	repeated	for	each	row	in	creators.

This	was	confirmed	when	we	looked	at	the	results	of	the	merge	in	step	8.	We

performed	an	outer	join	with	id	as	the	merge-by	column.	(We	also	shortened

the	citation	and	creator	descriptions	to	make	them	easier	to
view.)	When	we	displayed	the	rows	in	the	merged	file	for	the	same	ID	we	used
in	step	7,	we	got	the	28	rows	we	were	expecting	(I	removed	the	last	14	rows	of
output	to	save	space).
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There's	more...
It	is	good	to	understand	what	to	expect	when	we	do	a	many-to-many	merge
because	there	are	times	when	it	cannot	be	avoided.	But	even	in	this	case,	we	can
tell	that	the	many-to-many	relationship	is	really	just	two	one-to-many
relationships	with	the	data	file	missing	from	the	one	side.	There	is	likely	a	data
table	that	contains	one	row	per	collection	item	that	has	a	one-to-many

relationship	with	both	the	citations	data	and	the	creators	data.
When	we	do	not	have	access	to	a	file	like	that,	it	is	probably	best	to	try	to
reproduce	a	file	with	that	structure.	With	this	data,	we	could	have	created	a	file

containing	id	and	maybe	title,	and	then	done	one-to-many	merges	with

the	citations	and	creators	data.

However,	there	are	occasions	when	we	must	produce	a	flat	file	for	subsequent
analysis.	We	might	need	to	do	that	when	we,	or	a	colleague	who	is	getting	the
cleaned	data	from	us,	are	using	software	that	cannot	handle	relational	data	well.
For	example,	someone	in	another	department	might	do	a	lot	of	data	visualization
work	with	Excel.	As	long	as	that	person	knows	which	analyses	require	them	to
remove	duplicated	rows,	a	file	with	a	structure	like	the	one	we	produced	in	step
8	might	work	fine.

Developing	a 	merge	rout ine
I	find	it	helpful	to	think	of	merging	data	as	the	parking	lot	of	the	data	cleaning
process.	Merging	data	and	parking	may	seem	routine,	but	they	are	where	a
disproportionate	number	of	accidents	occur.	One	approach	to	getting	in	and	out
of	parking	lots	without	an	incident	occurring	is	to	use	a	similar	strategy	each
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time	you	go	to	a	particular	lot.	It	could	be	that	you	always	go	to	a	relatively	low
traffic	area	and	you	get	to	that	area	the	same	way	most	of	the	time.

I	think	a	similar	approach	can	be	applied	to	getting	in	and	out	of	merges	with	our
data	relatively	unscathed.	If	we	choose	a	general	approach	that	works	for	us	80
to	90	percent	of	the	time,	we	can	focus	on	what	is	most	important	–	the	data,
rather	than	the	techniques	for	manipulating	that	data.

In	this	recipe,	I	will	demonstrate	the	general	approach	that	works	for	me,	but	the
particular	techniques	I	will	use	are	not	very	important.	I	think	it	is	just	helpful	to
have	an	approach	that	you	understand	well	and	that	you	become	comfortable
using.

Getting	ready
We	will	return	to	the	objectives	we	focused	on	in	the	Doing	one-to-many	merges

recipe	of	this	chapter.	We	want	to	do	a	left	join	of	the	countries	data

with	the	locations	data	from	the	Global	Historical	Climatology
Network	integrated	database.

How	to	do	it…
In	this	recipe,	we	will	do	a	left	join	of	the	countries	and

locations	data	after	checking	for	merge-by	value	mismatches.	Let's	get
started:

1.	 Import	pandas	and	load	the	weather	station	and	country	data:

>>>	import	pandas	as	pd
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>>>	countries	=

pd.read_csv("data/ltcountries.csv")

>>>	locations	=

pd.read_csv("data/ltlocations.csv")

2.	 Check	the	merge-by	column	matches:

>>>	def	checkmerge(dfleft,	dfright,

mergebyleft,	mergebyright):

...			dfleft['inleft']	=	"Y"

...			dfright['inright']	=	"Y"

...			dfboth	=

pd.merge(dfleft[[mergebyleft,'inleft']],\

...					dfright[[mergebyright,'inright']],

left_on=[mergebyleft],\

...					right_on=[mergebyright],

how="outer")

...			dfboth.fillna('N',

inplace=True)

...			print(pd.crosstab(dfboth.inleft,

dfboth.inright))

...			print(dfboth.loc[(dfboth.inleft=='N')

|

(dfboth.inright=='N')].head(20))

...
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>>>	checkmerge(countries.copy(),

locations.copy(),	"countryid",

"countryid")

inright		N						Y

inleft											

N								0						1

Y								2		27472

						countryid	inleft	inright

9715									LQ						Y							N

13103								ST						Y							N

27474								FO						N							Y

3.	 Merge	the	country	and	location	data:

>>>	stations	=	pd.merge(countries,

locations,	left_on=

["countryid"],	right_on=

["countryid"],	how="left")

>>>

stations[['locationid','latitude','stnelev','country']].head(10)

				locationid		latitude		stnelev															country

0		ACW00011604								58							18			Antigua

and	Barbuda

1		AE000041196								25							34		United

Arab	Emirates
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2		AEM00041184								26							31		United

Arab	Emirates

3		AEM00041194								25							10		United

Arab	Emirates

4		AEM00041216								24								3		United

Arab	Emirates

5		AEM00041217								24							27		United

Arab	Emirates

6		AEM00041218								24						265		United

Arab	Emirates

7		AF000040930								35				3,366											Afghanistan

8		AFM00040911								37						378											Afghanistan

9		AFM00040938								34						977											Afghanistan

>>>	stations.shape

(27474,	7)

Here,	we	got	the	expected	number	of	rows	from	a	left	join;	27,472	rows	with
merge-by	values	in	both	DataFrames	and	two	rows	with	merge-by	values	in	the
left	DataFrame,	but	not	the	right.

How	it	works...
For	the	overwhelming	majority	of	merges	I	do,	something	like	the	logic	used	in
steps	2	and	3	works	well.	We	added	a	fourth	argument	to	the

checkmerge	function	we	used	in	the	previous	recipe.	This	allows	us	to

Telegram Channel @nettrain



specify	different	merge-by	columns	for	the	left	and	right	DataFrames.	We	do	not
need	to	recreate	this	function	every	time	we	do	a	merge.	We	can	just	include	it	in
a	module	that	we	import.	(We'll	go	over	adding	helper	functions	to	modules	in
the	final	chapter	of	this	book).

Calling	the	checkmerge	function	before	running	a	merge	gives	us
enough	information	so	that	we	know	what	to	expect	when	running	the	merge
with	different	join	types.	We	will	know	how	many	rows	will	be	returned	from	an
inner,	outer,	left,	or	right	join.	We	will	also	know	where	the	new	missing	values
will	be	generated	before	we	run	the	actual	merge.	Of	course,	this	is	a	fairly
expensive	operation,	requiring	us	to	run	a	merge	twice	each	time	–	one
diagnostic	outer	join	followed	by	whatever	join	we	subsequently	choose.	But	I
would	argue	that	it	is	usually	worth	it,	if	for	no	other	reason	than	that	it	helps	us
to	stop	and	think	about	what	we	are	doing.

Finally,	we	performed	the	merge	in	step	3.	This	is	my	preferred	syntax.	I	always
use	the	left	DataFrame	for	the	first	argument	and	the	right	DataFrame	for	the

second	argument,	though	merge	allows	us	to	specify	the	left	and	right

DataFrames	in	different	ways.	I	also	set	values	for	left_on	and

right_on,	even	if	the	merge-by	column	is	the	same	and	I	could	use	on
instead	(as	we	did	in	the	previous	recipe).	This	is	so	I	will	not	have	to	change	the
syntax	in	cases	where	the	merge-by	column	is	different,	and	I	like	it	that	it	makes
the	merge-by	column	explicit	for	both	DataFrames.

A	somewhat	more	controversial	routine	is	that	I	default	to	a	left	join,	setting	the

how	parameter	to	left	initially.	I	make	that	my	starting	assumption	and	then	ask
myself	if	there	is	any	reason	to	do	a	different	join.	The	rows	in	the	left
DataFrame	often	represent	my	unit	of	analysis	(students,	patients,	customers,
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and	so	on)	and	that	I	am	adding	supplemental	data	(GPA,	blood	pressure,	zip
code,	and	so	on).	It	may	be	problematic	to	remove	rows	from	the	unit	of	analysis
because	the	merge-by	value	is	not	present	on	the	right	DataFrame,	as	would
happen	if	I	did	an	inner	join	instead.	For	example,	in	the	Doing	one-to-one
merges	recipe	of	this	chapter,	it	probably	would	not	have	made	sense	to	remove
rows	from	the	main	NLS	data	because	they	do	not	appear	on	the	supplemental
data	we	have	for	parents.

See	also
We	will	create	modules	with	useful	data	cleaning	functions	in	Chapter	10,	User-
Defined	Functions	and	Classes	to	Automate	Data	Cleaning.

We	have	discussed	the	types	of	joins	in	the	Doing	one	to	one	merges	recipe	in
this	chapter.
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Chapter 	9: 	Tidying	and
Reshaping	Data
As	Leo	Tolstoy	and	Hadley	Wickham	tell	us,	all	tidy	data	is	fundamentally	alike,
but	all	untidy	data	is	messy	in	its	own	special	way.	How	many	times	have	we	all
stared	at	some	rows	of	data	and	thought,	"what.....	how......	why	did	they	do
that?"	This	overstates	the	case	somewhat.	Although	there	are	many	ways	that
data	can	be	poorly	structured,	there	are	limits	to	human	creativity	in	this	regard.
It	is	possible	to	categorize	the	most	frequent	ways	in	which	datasets	deviate	from
normalized	or	tidy	forms.

This	was	Hadley	Wickham's	observation	in	his	seminal	work	on	tidy	data.	We
can	lean	on	that	work,	and	our	own	experiences	with	oddly	structured	data,	to
prepare	for	the	reshaping	we	have	to	do.	Untidy	data	often	has	one	or	more	of
the	following	characteristics:	a	lack	of	clarity	about	merge-by	column
relationships;	data	redundancy	on	the	one	side	of	one-to-many	relationships;	data
redundancy	due	to	many-to-many	relationships;	values	stored	in	column	names;
multiple	values	stored	in	one	variable	value;	and	data	not	being	structured	at	the
unit	of	analysis.	(Although	the	last	category	is	not	necessarily	a	case	of	untidy
data,	some	of	the	techniques	we	will	review	in	the	next	few	recipes	are
applicable	to	common	unit-of-analysis	problems.)

We	use	powerful	tools	in	this	chapter	to	deal	with	data	cleaning	challenges	like
the	preceding.	Specifically,	we'll	go	over	the	following:

Removing	duplicated	rows

Fixing	many-to-many	relationships
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Using	stack	and	melt	to	reshape	data	from	a	wide	to	long	format

Melting	multiple	groups	of	columns

Using	unstack	and	pivot	to	reshape	data	from	long	to	wide	format

Technical 	 requirements
The	code	and	notebooks	for	this	chapter	are	available	on	GitHub	at
https://github.com/PacktPublishing/Python-Data-Cleaning-Cookbook

Removing	dupl icated	rows
There	are	several	reasons	why	we	might	have	data	duplicated	at	the	unit	of
analysis:

The	existing	DataFrame	may	be	the	result	of	a	one-to-many	merge,	and	the
one	side	is	the	unit	of	analysis.

The	DataFrame	is	repeated	measures	or	panel	data	collapsed	into	a	flat	file,
which	is	just	a	special	case	of	the	first	situation.

We	may	be	working	with	an	analysis	file	where	multiple	one-to-many
relationships	have	been	flattened,	creating	many-to-many	relationships.

When	the	one	side	is	the	unit	of	analysis,	data	on	the	many	side	may	need	to	be
collapsed	in	some	way.	For	example,	if	we	are	analyzing	outcomes	for	a	cohort
of	students	at	a	college,	students	are	the	unit	of	analysis;	but	we	may	also	have
course	enrollment	data	for	each	student.	To	prepare	the	data	for	analysis,	we
might	need	to	first	count	the	number	of	courses,	sum	the	total	credits,	or
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calculate	the	GPA	for	each	student,	before	ending	up	with	one	row	per	student.
To	generalize	from	this	example,	we	often	need	to	aggregate	the	information	on
the	many	side	before	removing	duplicated	data.

In	this	recipe,	we	look	at	pandas	techniques	for	removing	duplicate	rows,	and
consider	when	we	do	and	don't	need	to	do	aggregation	during	that	process.	We
address	duplication	in	many-to-many	relationships	in	the	next	recipe.

Getting	ready...
We	will	work	with	the	COVID-19	daily	case	data	in	this	recipe.	It	has	one	row
per	day	per	country,	each	row	having	the	number	of	new	cases	and	new	deaths
for	that	day.	There	are	also	demographic	data	for	each	country,	and	running
totals	for	cases	and	deaths,	so	the	last	row	for	each	country	provides	total	cases
and	total	deaths.

NOTE
Our	World	in	Data	provides	COVID-19	public	use	data	at
https://ourworldindata.org/coronavirus-source-data.	The	data	used	in	this	recipe
was	downloaded	on	July	18,	2020.

How	to	do	it…
We	use	drop_duplicates	to	remove	duplicated	demographic	data

for	each	country	in	the	COVID	daily	data.	We	explore	groupby	as	an
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alternative	to	drop_duplicates	when	we	need	to	do	some
aggregation	before	removing	duplicated	data:

1.	 Import	pandas	and	the	COVID	daily	cases	data:

>>>	import	pandas	as	pd

>>>	covidcases	=

pd.read_csv("data/covidcases720.csv")

2.	 Create	lists	for	the	daily	cases	and	deaths	columns,	the	case	total	columns,	and
the	demographic	columns:

>>>	dailyvars	=

['casedate','new_cases','new_deaths']

>>>	totvars	=

['location','total_cases','total_deaths']

>>>	demovars	=

['population','population_density','median_age',

...			'gdp_per_capita','hospital_beds_per_thousand','region']

>>>

>>>	covidcases[dailyvars	+	totvars	+

demovars].head(3).T

																																							0													1													2

casedate																						2019-

12-31				2020-01-01				2020-01-

02

new_cases																											0.00										0.00										0.00
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new_deaths																										0.00										0.00

										0.00

location																					Afghanistan			Afghanistan			Afghanistan

total_cases																									0.00										0.00										0.00

total_deaths																								0.00										0.00

										0.00

population																	38,928,341.00

38,928,341.00	38,928,341.00

population_density																	54.42									54.42									54.42

median_age																									18.60									18.60									18.60

gdp_per_capita																		1,803.99						1,803.99						1,803.99

hospital_beds_per_thousand										0.50										0.50										0.50

region																								South

Asia				South	Asia				South

Asia

3.	 Create	a	DataFrame	with	just	the	daily	data:

>>>	coviddaily	=

covidcases[['location']	+

dailyvars]

>>>	coviddaily.shape

(29529,	4)

>>>	coviddaily.head()

						location				casedate		new_cases		new_deaths
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0		Afghanistan		2019-12-

31							0.00								0.00

1		Afghanistan		2020-01-

01							0.00								0.00

2		Afghanistan		2020-01-

02							0.00								0.00

3		Afghanistan		2020-01-

03							0.00								0.00

4		Afghanistan		2020-01-

04							0.00								0.00

4.	 Select	one	row	per	country.

Check	to	see	how	many	countries	(location)	to	expect	by	getting	the

number	of	unique	locations.	Sort	by	location	and	casedate.

Then	use	drop_duplicates	to	select	one	row	per

location,	and	use	the	keep	parameter	to	indicate	that	we	want	the
last	row	for	each	country:

>>>	covidcases.location.nunique()

209

>>>	coviddemo	=

covidcases[['casedate']	+

totvars	+	demovars].\

...			sort_values(['location','casedate']).\

...			drop_duplicates(['location'],

keep='last').\
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...			rename(columns=

{'casedate':'lastdate'})

>>>

>>>	coviddemo.shape

(209,	10)

>>>	coviddemo.head(3).T

																																					184													310											500

lastdate																						2020-

07-12						2020-07-12				2020-

07-12

location																					Afghanistan									Albania							Algeria

total_cases																				34,451.00								3,371.00					18,712.00

total_deaths																				1,010.00											89.00						1,004.00

population																	38,928,341.00				2,877,800.00

43,851,043.00

population_density																	54.42										104.87									17.35

median_age																									18.60											38.00									29.10

gdp_per_capita																		1,803.99							11,803.43					13,913.84

hospital_beds_per_thousand										0.50												2.89										1.90

region																								South

Asia		Eastern	Europe		North

Africa

5.	 Sum	the	values	for	each	group.
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Use	the	pandas	DataFrame	groupby	method	to	sum	total	cases	and
deaths	for	each	country.	Also,	get	the	last	value	for	some	of	the	columns	that

are	duplicated	across	all	rows	for	each	country:	median_age,

gdp_per_capita,	region,	and	casedate.	(We	select
only	a	few	columns	from	the	DataFrame.)	Notice	that	the	numbers	match
those	from	step	4:

>>>	covidtotals	=

covidcases.groupby(['location'],

as_index=False).\

...			agg({'new_cases':'sum','new_deaths':'sum','median_age':'last',

...					'gdp_per_capita':'last','region':'last','casedate':'last',

...					'population':'last'}).\

...			rename(columns=

{'new_cases':'total_cases',

...					'new_deaths':'total_deaths','casedate':'lastdate'})

>>>	covidtotals.head(3).T

																											0															1													2

location									Afghanistan									Albania							Algeria

total_cases								34,451.00								3,371.00					18,712.00

total_deaths								1,010.00											89.00						1,004.00

median_age													18.60											38.00									29.10

gdp_per_capita						1,803.99							11,803.43					13,913.84

region												South	Asia		Eastern

Europe		North	Africa
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lastdate										2020-07-

12						2020-07-12				2020-07-

12

population					38,928,341.00				2,877,800.00

43,851,043.00

The	choice	of	drop_duplicates	or	groupby	to	eliminate	data
redundancy	comes	down	to	whether	we	need	to	do	any	aggregation	before
collapsing	the	many	side.

How	it	works...
The	COVID	data	has	one	row	per	country	per	day,	but	very	little	of	the	data	is

actually	daily	data.	Only	casedate,	new_cases,	and

new_deaths	can	be	considered	daily	data.	The	other	columns	show
cumulative	cases	and	deaths,	or	demographic	data.	The	cumulative	data	is

redundant	since	we	have	the	actual	values	for	new_cases	and

new_deaths.	The	demographic	data	has	the	same	values	for	each
country	across	all	days.

There	is	an	implied	one-to-many	relationship	between	country	(and	its
associated	demographic	data)	on	the	one	side	and	the	daily	data	on	the	many
side.	We	can	recover	that	structure	by	creating	a	DataFrame	with	the	daily	data,
and	another	DataFrame	with	the	demographic	data.	We	do	that	in	steps	3	and	4.
When	we	need	totals	across	countries	we	can	generate	those	ourselves,	rather
than	storing	redundant	data.
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The	running	totals	variables	are	not	completely	useless,	however.	We	can	use
them	to	check	our	calculations	of	total	cases	and	total	deaths.	Step	5	shows	how

we	can	use	groupby	to	restructure	data	when	we	need	to	do	more	than

drop	duplicates.	In	this	case,	we	want	to	summarize	new_cases	and

many-to-many	relationships	new_deaths	for	each	country.

There's	more...
I	can	sometimes	forget	a	small	detail.	When	changing	the	structure	of	data,	the

meaning	of	certain	columns	can	change.	In	this	example,	casedate
becomes	the	date	for	the	last	row	for	each	country.	We	rename	that	column

lastdate.

See	also...
We	explore	groupby	in	more	detail	in	Chapter	7,	Fixing	Messy	Data	when
Aggregating.	Hadley	Wickham's	Tidy	Data	paper	is	available	at
https://vita.had.co.nz/papers/tidy-data.pdf.

Fixing	many-to-many
relat ionships
We	sometimes	have	to	work	with	a	data	table	that	was	created	from	a	many-to-
many	merge.	This	is	a	merge	where	merge-by	column	values	are	duplicated	on
both	the	left	and	right	sides.	As	we	discussed	in	the	previous	chapter,	many-to-
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many	relationships	in	a	data	file	often	represent	multiple	one-to-many
relationships	where	the	one	side	has	been	removed.	There	is	a	one-to-many
relationship	between	dataset	A	and	dataset	B,	and	also	a	one-to-many
relationship	between	dataset	A	and	dataset	C.	The	problem	we	sometimes	have
is	that	we	receive	a	data	file	with	B	and	C	merged,	but	with	A	excluded.

The	best	way	to	work	with	data	structured	in	this	way	is	to	recreate	the	implied
one-to-many	relationships,	if	possible.	We	do	this	by	first	creating	a	dataset
structured	like	A;	that	is,	how	A	is	likely	structured	given	the	many-to-many
relationship	we	see	between	B	and	C.	The	key	to	being	able	to	do	this	is	in
identifying	a	good	merge-by	column	for	the	data	on	both	sides	of	the	many-to-
many	relationship.	This	column	or	column(s)	will	be	duplicated	in	both	the	B
and	C	datasets,	but	will	be	unduplicated	in	the	theoretical	A	dataset.

The	data	we	use	in	this	recipe	is	a	good	example.	We	have	data	from	the
Cleveland	Museum	of	Art	on	its	collections.	We	have	two	datasets:	a	creators
file	and	a	media	citations	file.	The	creators	file	has	the	creator	or	creators	of
every	item	in	the	museum's	collections.	There	is	one	row	for	each	creator,	so
there	may	be	multiple	rows	for	each	collection	item.	The	citations	file	has
citations	(in	newspapers,	from	news	stations,	in	journals,	and	so	on)	for	every
item.	The	citations	file	has	a	row	for	each	citation,	and	so	often	has	multiple
rows	per	collection	item.

We	do	not	have	what	we	might	expect	–	a	collections	file	with	one	row	(and	a
unique	identifier)	for	each	item	in	the	collection.	This	leaves	us	with	just	the
many-to-many	relationship	between	the	creators	and	citations	datasets.

I	should	add	that	this	situation	is	not	the	fault	of	the	Cleveland	Museum	of	Art,
which	generously	provides	an	API	that	returns	collections	data	as	a	JSON	file.	It
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is	possible	to	extract	the	data	needed	from	the	JSON	file	to	produce	a	collections
DataFrame,	in	addition	to	the	creators	and	citations	data	that	I	have	extracted.
But	we	do	not	always	have	access	to	data	like	that	and	it	is	good	to	have
strategies	for	when	we	do	not.

Getting	ready...
We	will	work	with	data	on	the	Cleveland	Museum	of	Art's	collections.	The	CSV

file	has	data	on	both	creators	and	citations	merged	by	an	id	column	that
identifies	the	collection	item.	There	are	one	or	many	rows	for	citations	and
creators	for	each	item.

NOTE
The	Cleveland	Museum	of	Art	provides	an	API	for	public	access	to	this	data:
https://openaccess-api.clevelandart.org.	Much	more	than	the	citations	and
creators	data	used	in	this	recipe	is	available	with	the	API.

How	to	do	it…
We	handle	many-to-many	relationships	between	DataFrames	by	recovering	the
multiple	implied	one-to-many	relationships	in	the	data:

1.	 Import	pandas	and	the	museum's	collections	data:

>>>	import	pandas	as	pd

>>>	cma	=

pd.read_csv("data/cmacollections.csv")
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2.	 Show	the	museum's	collections	data.

Also	show	the	number	of	unique	id,	citation,	and	creator
values:

>>>	cma.shape

(12326,	9)

>>>	cma.head(2).T

																																	0																				1

id																											92937																92937

citation								Milliken,

William				Glasier,	Jessie	C.

creator									George	Bellows

(Am			George	Bellows	(Am

title												Stag	at

Sharkey's				Stag	at	Sharkey's

birth_year																				1882																	1882

death_year																				1925																	1925

collection					American	-

Painting		American	-	Painting

type																						Painting													Painting

creation_date																	1909																	1909

>>>	cma.id.nunique()

972
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>>>

cma.drop_duplicates(['id','citation']).id.count()

9758

>>>

cma.drop_duplicates(['id','creator']).id.count()

1055

3.	 Show	a	collection	item	with	duplicated	citations	and	creators.

Only	show	the	first	14	rows	(there	are	actually	28	in	total):

>>>	cma.set_index(['id'],

inplace=True)

>>>	cma.loc[124733,

['title','citation','creator','birth_year']].head(14)

																title												citation													creator		birth_year

id																																																																									

124733		Dead	Blue	Roller		Weigel,	J.

A.	G.		Albrecht

Dürer(Ge								1471

124733		Dead	Blue	Roller		Weigel,	J.

A.	G.		Hans

Hoffmann(Ger					1545/50

124733		Dead	Blue	Roller		Winkler,

Friedrich	Albrecht

Dürer(Ge							1471
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124733		Dead	Blue	Roller		Winkler,

Friedrich	Hans

Hoffmann(Ger				1545/50

124733		Dead	Blue	Roller		Francis,

Henry	S.		Albrecht

Dürer(Ge							1471

124733		Dead	Blue	Roller		Francis,

Henry	S.		Hans

Hoffmann(Ger				1545/50

124733		Dead	Blue	Roller		Kurz,	Otto.

<em>Fa	Albrecht

Dürer(Ge							1471

124733		Dead	Blue	Roller		Kurz,	Otto.

<em>Fa	Hans

Hoffmann(Ger				1545/50

124733		Dead	Blue	Roller		Minneapolis

Instit	Albrecht

Dürer(Ge							1471

124733		Dead	Blue	Roller		Minneapolis

Instit	Hans

Hoffmann(Ger				1545/50

124733		Dead	Blue	Roller		Pilz,	Kurt.

"Hans		Albrecht

Dürer(Ge							1471
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124733		Dead	Blue	Roller		Pilz,	Kurt.

"Hans		Hans

Hoffmann(Ger				1545/50

124733		Dead	Blue	Roller		Koschatzky,

Walter	Albrecht

Dürer(Ge							1471

124733		Dead	Blue	Roller		Koschatzky,

Walter	Hans

Hoffmann(Ger				1545/50

4.	 Create	a	collections	DataFrame:

>>>	collectionsvars	=

['title','collection','type']

>>>	cmacollections	=

cma[collectionsvars].\

...			reset_index().\

...			drop_duplicates(['id']).\

...			set_index(['id'])

>>>

>>>	cmacollections.shape

(972,	3)

>>>	cmacollections.head()

																																	title												collection						type

id																																																																				
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92937																Stag	at

Sharkey's			American	-

Painting		Painting

94979																			Nathaniel

Hurd			American	-

Painting		Painting

137259								Mme	L...	(Laure

Borreau)		Mod	Euro	-

Painting			Painting

141639						Twilight	in	the

Wilderness			American	-

Painting		Painting

93014			View	of	Schroon	Mountain,

Esse			American	-

Painting		Painting

>>>	cmacollections.loc[124733]

title									Dead	Blue	Roller

collection									DR	-	German

type																			Drawing

Name:	124733,	dtype:	object

5.	 Create	a	citations	DataFrame:

This	will	just	have	the	id	and	the	citation:

>>>	cmacitations	=

cma[['citation']].\
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...			reset_index().\

...			drop_duplicates(['id','citation']).\

...			set_index(['id'])

>>>

>>>	cmacitations.loc[124733]

																		citation

id																								

124733		Weigel,	J.	A.	G.	<

124733		Winkler,	Friedrich

124733		Francis,	Henry	S.

124733		Kurz,	Otto.	<em>Fa

124733		Minneapolis	Instit

124733		Pilz,	Kurt.	"Hans

124733		Koschatzky,	Walter

124733		Johnson,	Mark	M<em

124733		Kaufmann,	Thomas	D

124733		Koreny,	Fritz.	<em

124733		Achilles-Syndram,

124733		Schoch,	Rainer,	Ka

124733		DeGrazia,	Diane	an

124733		Dunbar,	Burton	L.,

6.	 Create	a	creators	DataFrame:

Telegram Channel @nettrain



>>>	creatorsvars	=

['creator','birth_year','death_year']

>>>

>>>	cmacreators	=	cma[creatorsvars].\

...			reset_index().\

...			drop_duplicates(['id','creator']).\

...			set_index(['id'])

>>>

>>>	cmacreators.loc[124733]

																			creator	birth_year

death_year

id																																														

124733		Albrecht	Dürer

(Ge							1471							1528

124733		Hans	Hoffmann

(Ger				1545/50				1591/92

7.	 Count	the	number	of	collection	items	with	a	creator	born	after	1950.

First,	convert	the	birth_year	values	from	string	to	numeric.	Then
create	a	DataFrame	with	just	young	artists.	Finally,	merge	that	DataFrame
with	the	collections	DataFrame	to	create	a	flag	for	collection	items	that	have
at	least	one	creator	born	after	1950:

>>>	cmacreators['birth_year']	=

cmacreators.birth_year.str.findall("\d+").str[0].astype(float)
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>>>	youngartists	=

cmacreators.loc[cmacreators.birth_year>1950,

['creator']].assign(creatorbornafter1950='Y')

>>>

youngartists.shape[0]==youngartists.index.nunique()

True

>>>	youngartists

																			creator

creatorbornafter1950

id																																													

371392		Belkis	Ayón

(Cuban																				Y

162624		Robert	Gober

(Amer																				Y

172588		Rachel	Harrison

(A																				Y

169335		Pae	White

(America																				Y

169862		Fred	Wilson

(Ameri																				Y

312739		Liu	Jing

(Chinese,																				Y

293323		Zeng	Xiaojun

(Chin																				Y
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172539		Fidencio	Fifield-

P																				Y

>>>	cmacollections	=

pd.merge(cmacollections,

youngartists,	left_on=['id'],

right_on=['id'],	how='left')

>>>

cmacollections.creatorbornafter1950.fillna("N",

inplace=True)

>>>	cmacollections.shape

(972,	5)

>>>

cmacollections.creatorbornafter1950.value_counts()

N				964

Y						8

Name:	creatorbornafter1950,	dtype:

int64

We	now	we	have	three	DataFrames	–	collection	items

(cmacollections),	citations	(cmacitations),	and

creators	(cmacreators)	–	instead	of	one.	cmacollections

has	a	one-to-many	relationship	with	both	cmacitations	and

cmacreators.

How	it	works...

Telegram Channel @nettrain



If	you	mainly	work	directly	with	enterprise	data,	you	probably	rarely	see	a	file
with	this	kind	of	structure,	but	many	of	us	are	not	so	lucky.	If	we	requested	data
from	the	museum	on	both	the	media	citations	and	creators	of	their	collections,	it
would	not	be	completely	surprising	to	get	a	data	file	similar	to	this	one,	with
duplicated	data	for	citations	and	creators.	But	the	presence	of	what	looks	like	a
unique	identifier	of	collection	items	gives	us	some	hope	of	recovering	the	one-
to-many	relationships	between	a	collection	item	and	its	citations,	and	a
collection	item	and	its	creators.

Step	2	shows	that	there	are	972	unique	id	values.	This	suggests	that	there	are
probably	only	972	collection	items	represented	in	the	12,326	rows	of	the

DataFrame.	There	are	9,758	unique	id	and	citation	pairs,	or	about	10

citations	per	collection	item	on	average.	There	are	1,055	id	and	creator
pairs.

Step	3	shows	the	duplication	of	collection	item	values	such	as	title.	The
number	of	rows	returned	is	equal	to	the	Cartesian	product	of	the	merge-by	values
on	the	left	and	ride	side	of	the	merge.	For	the	Dead	Blue	Roller	item,	there	are
14	citations	(we	only	show	half	of	them	in	step	3)	and	2	creators.	The	row	for
each	creator	is	duplicated	14	times;	once	for	each	citation.	There	are	very	few
use	cases	for	which	it	makes	sense	to	leave	the	data	in	this	state.

Our	North	Star	to	guide	us	in	getting	this	data	into	better	shape	is	the	id
column.	We	use	it	to	create	a	collections	DataFrame	in	step	4.	We	keep	only	one

row	for	each	value	of	id,	and	get	other	columns	associated	with	a	collection

item,	rather	than	a	citation	or	creator	–	title,	collection,	and

type	(since	id	is	the	index	we	need	to	first	reset	the	index	before	dropping
duplicates).
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We	follow	the	same	procedure	to	create	citations	and	creators

DataFrames	in	steps	5	and	6.	We	use	drop_duplicates	to	keep

unique	combinations	of	id	and	citation,	and	unique	combinations	of

id	and	creator,	respectively.	This	gives	us	the	expected	number	of	rows

in	the	example	case:	14	citations	rows	and	2	creators	rows.

Step	7	demonstrates	how	we	can	now	work	with	these	DataFrames	to	construct
new	columns	and	do	analysis.	We	want	the	number	of	collection	items	that	have
at	least	one	creator	born	after	1950.	The	unit	of	analysis	is	the	collection	items,
but	we	need	information	from	the	creators	DataFrame	for	the	calculation.	Since

the	relationship	between	cmacollections	and

cmacreators	is	one-to-many,	we	make	sure	that	we	are	only	retrieving

one	row	per	id	in	the	creators	DataFrame,	even	if	more	than	one	creator	for	an
item	was	born	after	1950:

youngartists.shape[0]==youngartists.index.nunique()

There's	more...
The	duplication	that	occurs	with	many-to-many	merges	is	most	problematic
when	we	are	working	with	quantitative	data.	If	the	original	file	had	the	assessed
value	of	each	item	in	the	collection,	it	would	be	duplicated	in	much	the	same

way	as	title	is	duplicated.	Any	descriptive	statistics	we	generated	on	the
assessed	value	would	be	off	by	a	fair	bit.	For	example,	if	the	Dead	Blue	Roller
item	had	an	assessed	value	of	$1,000,000,	we	would	get	$28,000,000	when
summarizing	the	assessed	value,	since	there	are	28	duplicated	values.
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This	shows	the	importance	of	normalized	and	tidy	data.	If	there	were	an	assessed

value	column,	we	would	have	included	it	in	the	cmacollections
DataFrame	we	created	in	step	4.	This	value	would	be	unduplicated	and	we
would	be	able	to	generate	summary	statistics	for	collections.

I	find	it	helpful	to	always	return	to	the	unit	of	analysis,	which	overlaps	with	the
tidy	data	concept,	but	is	different	in	some	ways.	The	approach	in	step	7	would
have	been	very	different	if	we	were	just	interested	in	the	number	of	creators	born
after	1950,	instead	of	the	number	of	collection	items	with	a	creator	born	after
1950.	In	that	case,	the	unit	of	analysis	would	be	the	creator	and	we	would	just
use	the	creators	DataFrame.

See	also...
We	examine	many-to-many	merges	in	the	Doing	many-to-many	merges	recipe	in
Chapter	8,	Addressing	Data	Issues	when	Combining	DataFrames.

We	demonstrate	a	very	different	way	to	work	with	data	structured	in	this	way	in
Chapter	10,	User	Defined	Functions	and	Classes	to	Automate	Data	Cleaning,	in
the	Classes	that	handle	non-tabular	data	structures	recipe.

Using	s tack	and	melt 	 to 	 reshape
data 	 f rom	wide	 to 	 long	format
One	type	of	untidiness	that	Wickham	identified	is	variable	values	embedded	in
column	names.	Although	this	rarely	happens	with	enterprise	or	relational	data,	it
is	fairly	common	with	analytical	or	survey	data.	Variable	names	might	have
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suffixes	that	indicate	a	time	period,	such	as	a	month	or	year.	Another	case	is	that
similar	variables	on	a	survey	might	have	similar	names,	such	as

familymember1age,	familymember2age,	and	so	on,
because	that	is	convenient	and	consistent	with	the	survey	designers'
understanding	of	the	variable.

One	reason	why	this	messiness	happens	relatively	frequently	with	survey	data	is
that	there	can	be	multiple	units	of	analysis	on	one	survey	instrument.	An
example	is	the	United	States	decennial	census,	which	asks	both	household	and
person	questions.	Survey	data	is	also	sometimes	made	up	of	repeated	measures
or	panel	data,	but	nonetheless	often	has	only	one	row	per	respondent.	When	this
is	the	case,	new	measurements	or	responses	are	stored	in	new	columns	rather
than	new	rows,	and	the	column	names	will	be	similar	to	column	names	for
responses	from	earlier	periods,	except	for	a	change	in	suffix.

The	United	States	National	Longitudinal	Survey	of	Youth	(NLS)	is	a	good
example	of	this.	It	is	panel	data,	where	each	individual	is	surveyed	each	year.
However,	there	is	just	one	row	of	data	per	respondent	in	the	analysis	file
provided.	Responses	to	questions	such	as	the	number	of	weeks	worked	in	a
given	year	are	placed	in	new	columns.	Tidying	the	NLS	data	means	converting

columns	such	as	weeksworked00	through	weeksworked04
(for	weeks	worked	in	2000	through	2004)	to	just	one	column	for	weeks	worked,
another	column	for	year,	and	five	rows	for	each	person	(one	for	each	year)	rather
than	one.

Amazingly,	pandas	has	several	functions	that	make	transformations	like	this

relatively	easy:	stack,	melt,	and	wide_to_long.	We	use

stack	and	melt	in	this	recipe,	and	explore	wide_to_long	in
the	next.
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Getting	ready...
We	will	work	with	the	NLS	data	on	the	number	of	weeks	worked	and	college
enrollment	status	for	each	year.	The	DataFrame	has	one	row	per	survey
respondent.

NOTE
The	NLS	is	conducted	by	the	United	States	Bureau	of	Labor	Statistics.	It	is
available	for	public	use	at	https://www.nlsinfo.org/investigator/pages/search.
The	survey	started	with	a	cohort	of	individuals	in	1997	who	were	born	between
1980	and	1985,	with	annual	follow-ups	each	year	through	2017.

How	to	do	it…
We	will	use	stack	and	melt	to	transform	the	NLS'	weeks	worked	data
from	wide	to	long,	pulling	out	year	values	from	the	column	names	as	we	do	so:

1.	 Import	pandas	and	the	NLS	data:

>>>	import	pandas	as	pd

>>>	nls97	=

pd.read_csv("data/nls97f.csv")

2.	 View	some	of	the	values	for	the	number	of	weeks	worked.

First,	set	the	index:
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>>>	nls97.set_index(['originalid'],

inplace=True)

>>>

>>>	weeksworkedcols	=

['weeksworked00','weeksworked01','weeksworked02',

...			'weeksworked03','weeksworked04']

>>>	nls97[weeksworkedcols].head(2).T

originalid					8245		3962

weeksworked00				46					5

weeksworked01				52				49

weeksworked02				52				52

weeksworked03				48				52

weeksworked04				52				52

>>>	nls97.shape

(8984,	89)

3.	 Use	stack	to	transform	the	data	from	wide	to	long.

First,	select	only	the	weeksworked##	columns.	Use	stack	to
move	each	column	name	in	the	original	DataFrame	into	the	index	and	move

the	weeksworked##	values	into	the	associated	row.	Reset	the	index

so	that	the	weeksworked##	column	names	become	the	values	for

the	level_0	column	(which	we	rename	year),	and	the

weeksworked##	values	become	the	values	for	the	0	column

(which	we	rename	weeksworked):
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>>>	weeksworked	=

nls97[weeksworkedcols].\

...			stack(dropna=False).\

...			reset_index().\

...			rename(columns=

{'level_1':'year',0:'weeksworked'})

>>>

>>>	weeksworked.head(10)

			originalid											year		weeksworked

0								8245		weeksworked00											46

1								8245		weeksworked01											52

2								8245		weeksworked02											52

3								8245		weeksworked03											48

4								8245		weeksworked04											52

5								3962		weeksworked00												5

6								3962		weeksworked01											49

7								3962		weeksworked02											52

8								3962		weeksworked03											52

9								3962		weeksworked04											52

4.	 Fix	the	year	values.

Get	the	last	digits	of	the	year	values,	convert	them	to	integers,	and	add

2000:
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>>>	weeksworked['year']	=

weeksworked.year.str[-2:].astype(int)+2000

>>>	weeksworked.head(10)

			originalid		year		weeksworked

0								8245		2000											46

1								8245		2001											52

2								8245		2002											52

3								8245		2003											48

4								8245		2004											52

5								3962		2000												5

6								3962		2001											49

7								3962		2002											52

8								3962		2003											52

9								3962		2004											52

>>>	weeksworked.shape

(44920,	3)

5.	 Alternatively,	use	melt	to	transform	the	data	from	wide	to	long.

First,	reset	the	index	and	select	the	originalid	and

weeksworked##	columns.	Use	the	id_vars	and

value_vars	parameters	of	melt	to	specify	originalid

as	the	ID	variable	and	the	weeksworked##	columns	as	the	columns

to	be	rotated,	or	melted.	Use	the	var_name	and	value_name

parameters	to	rename	the	columns	to	year	and	weeksworked
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respectively.	The	column	names	in	value_vars	become	the	values

for	the	new	year	column	(which	we	convert	to	an	integer	using	the

original	suffix).	The	values	for	the	value_vars	columns	are	assigned

to	the	new	weeksworked	column	for	the	associated	row:

>>>	weeksworked	=

nls97.reset_index().\

...			loc[:,['originalid']	+

weeksworkedcols].\

...			melt(id_vars=['originalid'],

value_vars=weeksworkedcols,

...					var_name='year',

value_name='weeksworked')

>>>

>>>	weeksworked['year']	=

weeksworked.year.str[-2:].astype(int)+2000

>>>

weeksworked.set_index(['originalid'],

inplace=True)

>>>	weeksworked.loc[[8245,3962]]

												year		weeksworked

originalid																			

8245								2000											46

8245								2001											52

8245								2002											52
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8245								2003											48

8245								2004											52

3962								2000												5

3962								2001											49

3962								2002											52

3962								2003											52

3962								2004											52

6.	 Reshape	the	college	enrollment	columns	with	melt.

This	works	the	same	way	as	the	melt	function	for	the	weeks	worked
columns:

>>>	colenrcols	=

['colenroct00','colenroct01','colenroct02',

...			'colenroct03','colenroct04']

>>>

>>>	colenr	=	nls97.reset_index().\

...			loc[:,['originalid']	+

colenrcols].\

...			melt(id_vars=['originalid'],

value_vars=colenrcols,

...					var_name='year',

value_name='colenr')

>>>
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>>>	colenr['year']	=

colenr.year.str[-2:].astype(int)+2000

>>>	colenr.set_index(['originalid'],

inplace=True)

>>>	colenr.loc[[8245,3962]]

												year											colenr

originalid																							

8245								2000		1.	Not	enrolled

8245								2001		1.	Not	enrolled

8245								2002		1.	Not	enrolled

8245								2003		1.	Not	enrolled

8245								2004		1.	Not	enrolled

3962								2000		1.	Not	enrolled

3962								2001		1.	Not	enrolled

3962								2002		1.	Not	enrolled

3962								2003		1.	Not	enrolled

3962								2004		1.	Not	enrolled

7.	 Merge	the	weeks	worked	and	college	enrollment	data:

>>>	workschool	=

pd.merge(weeksworked,	colenr,

on=['originalid','year'],

how="inner")

>>>	workschool.shape
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(44920,	4)

>>>	workschool.loc[[8245,3962]]

												year		weeksworked											colenr

originalid																																				

8245								2000											46		1.	Not

enrolled

8245								2001											52		1.	Not

enrolled

8245								2002											52		1.	Not

enrolled

8245								2003											48		1.	Not

enrolled

8245								2004											52		1.	Not

enrolled

3962								2000												5		1.	Not

enrolled

3962								2001											49		1.	Not

enrolled

3962								2002											52		1.	Not

enrolled

3962								2003											52		1.	Not

enrolled

3962								2004											52		1.	Not

enrolled
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This	gives	us	one	DataFrame	from	the	melting	of	both	the	weeks	worked	and	the
college	enrollment	columns.

How	it	works...
We	can	use	stack	or	melt	to	reshape	data	from	wide	to	long	form,	but

melt	provides	more	flexibility.	stack	will	move	all	of	the	column	names
into	the	index.	We	see	in	step	4	that	we	get	the	expected	number	of	rows	after

stacking,	44920,	which	is	5*8,984,	the	number	of	rows	in	the	initial	data.

With	melt,	we	can	rotate	the	column	names	and	values	based	on	an	ID

variable	other	than	the	index.	We	do	this	with	the	id_vars	parameter.	We

specify	which	variables	to	melt	by	using	the	value_vars	parameter.

In	step	6,	we	also	reshape	the	college	enrollment	columns.	To	create	one
DataFrame	with	the	reshaped	weeks	worked	and	college	enrollment	data,	we
merge	the	two	DataFrames	we	created	in	steps	5	and	6.	We	will	see	in	the	next
recipe	how	to	accomplish	what	we	did	in	steps	5	through	7	in	one	step.

Melt ing	mult iple 	groups	of
columns
When	we	needed	to	melt	multiple	groups	of	columns	in	the	previous	recipe,	we

used	melt	twice	and	then	merged	the	resulting	DataFrames.	That	worked
fine,	but	we	can	accomplish	the	same	tasks	in	one	step	with	the
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wide_to_long	function.	wide_to_long	has	more

functionality	than	melt,	but	is	a	bit	more	complicated	to	use.

Getting	ready...
We	will	work	with	the	weeks	worked	and	college	enrollment	data	from	the	NLS
in	this	recipe.

How	to	do	it…
We	will	transform	multiple	groups	of	columns	at	once	using

wide_to_long:

1.	 Import	pandas	and	load	the	NLS	data:

>>>	import	pandas	as	pd

>>>	nls97	=

pd.read_csv("data/nls97f.csv")

>>>	nls97.set_index('personid',

inplace=True)

2.	 View	some	of	the	weeks	worked	and	college	enrollment	data:

>>>	weeksworkedcols	=

['weeksworked00','weeksworked01','weeksworked02',

...			'weeksworked03','weeksworked04']

>>>	colenrcols	=

['colenroct00','colenroct01','colenroct02',

Telegram Channel @nettrain



...			'colenroct03','colenroct04']

>>>

>>>

nls97.loc[nls97.originalid.isin([1,2]),

...			['originalid']	+

weeksworkedcols	+	colenrcols].T

personid																		135335														999406

originalid																					1																			2

weeksworked00																	53																		51

weeksworked01																	52																		52

weeksworked02																NaN																		44

weeksworked03																	42																		45

weeksworked04																	52																		52

colenroct00				3.	4-year	college			3.

4-year	college

colenroct01				3.	4-year	college		2.

2-year	college

colenroct02				3.	4-year	college			3.

4-year	college

colenroct03						1.	Not	enrolled			3.

4-year	college

colenroct04						1.	Not	enrolled			3.

4-year	college

3.	 Run	the	wide_to_long	function.
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Pass	a	list	to	stubnames	to	indicate	the	column	groups	wanted.	(All
columns	starting	with	the	same	characters	as	each	item	in	the	list	will	be

selected	for	melting.)	Use	the	i	parameter	to	indicate	the	ID	variable

(originalid),	and	use	the	j	parameter	to	name	the	column

(year)	that	is	based	on	the	column	suffixes	–	00,	01,	and	so	on:

>>>	workschool	=

pd.wide_to_long(nls97[['originalid']

+	weeksworkedcols

...			+	colenrcols],	stubnames=

['weeksworked','colenroct'],

...			i=['originalid'],

j='year').reset_index()

>>>

>>>	workschool['year']	=

workschool.year+2000

>>>	workschool	=

workschool.sort_values(['originalid','year'])

>>>

workschool.set_index(['originalid'],

inplace=True)

>>>	workschool.head(10)

												year		weeksworked											colenroct

originalid																																							

1											2000											53			3.	4-

year	college
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1											2001											52			3.	4-

year	college

1											2002										nan			3.	4-

year	college

1											2003											42					1.

Not	enrolled

1											2004											52					1.

Not	enrolled

2											2000											51			3.	4-

year	college

2											2001											52		2.	2-

year	college

2											2002											44			3.	4-

year	college

2											2003											45			3.	4-

year	college

2											2004											52			3.	4-

year	college

wide_to_long	accomplishes	in	one	step	what	it	took	us	several	steps

to	accomplish	in	the	previous	recipe	using	melt.

How	it	works...
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The	wide_to_long	function	does	almost	all	of	the	work	for	us,	though

it	takes	more	effort	to	set	it	up	than	for	stack	or	melt.	We	need	to

provide	the	function	with	the	characters	(weeksworked	and

colenroct	in	this	case)	of	the	column	groups.	Since	our	variables	are

named	with	suffixes	indicating	the	year,	wide_to_long	translates	the
suffixes	into	values	that	make	sense	and	melts	them	into	the	column	that	is

named	with	the	j	parameter.	It's	almost	magic!

There's	more...
The	suffixes	of	the	stubnames	columns	in	this	recipe	are	the	same:	00
through	04.	But	that	does	not	have	to	be	the	case.	When	suffixes	are	present	for
one	column	group,	but	not	for	another,	the	values	for	the	latter	column	group	for
that	suffix	will	be	missing.	We	can	see	that	if	we	exclude

weeksworked03	from	the	DataFrame	and	add

weeksworked05:

>>>	weeksworkedcols	=

['weeksworked00','weeksworked01','weeksworked02',

...			'weeksworked04','weeksworked05']

>>>

>>>	workschool	=

pd.wide_to_long(nls97[['originalid']

+	weeksworkedcols

...			+	colenrcols],	stubnames=

['weeksworked','colenroct'],
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...			i=['originalid'],

j='year').reset_index()

>>>

>>>	workschool['year']	=

workschool.year+2000

>>>	workschool	=

workschool.sort_values(['originalid','year'])

>>>

workschool.set_index(['originalid'],

inplace=True)

>>>	workschool.head(12)

												year		weeksworked											colenroct

originalid																																							

1											2000											53			3.	4-

year	college

1											2001											52			3.	4-

year	college

1											2002										nan			3.	4-

year	college

1											2003										nan					1.

Not	enrolled

1											2004											52					1.

Not	enrolled

1											2005											53																	NaN
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2											2000											51			3.	4-

year	college

2											2001											52		2.	2-

year	college

2											2002											44			3.	4-

year	college

2											2003										nan			3.	4-

year	college

2											2004											52			3.	4-

year	college

2											2005											53																	NaN

The	weeksworked	values	for	2003	are	now	missing,	as	are	the

colenroct	values	for	2005.	(The	weeksworked	value	for	2002

for	originalid	1	was	already	missing.)

Using	unstack	and	pivot 	 to
reshape	data 	 f rom	long	 to 	wide
Sometimes,	we	actually	have	to	move	data	from	a	tidy	to	an	untidy	structure.
This	is	often	because	we	need	to	prepare	the	data	for	analysis	with	software
packages	that	do	not	handle	relational	data	well,	or	because	we	are	submitting
data	to	some	external	authority	that	has	requested	it	in	an	untidy	format.

unstack	and	pivot	can	be	helpful	when	we	need	to	reshape	data	from
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long	to	wide	format.	unstack	does	the	opposite	of	what	we	did	with

stack,	and	pivot	does	the	opposite	of	melt.

Getting	ready...
We	continue	to	work	with	the	NLS	data	on	weeks	worked	and	college
enrollment	in	this	recipe.

How	to	do	it…
We	use	unstack	and	pivot	to	return	the	melted	NLS	DataFrame	to	its
original	state:

1.	 Import	pandas	and	load	the	stacked	and	melted	NLS	data:

>>>	import	pandas	as	pd

>>>	nls97	=

pd.read_csv("data/nls97f.csv")

>>>	nls97.set_index(['originalid'],

inplace=True)

2.	 Stack	the	data	again.

This	repeats	the	stack	operation	from	an	earlier	recipe	in	this	chapter:

>>>	weeksworkedcols	=

['weeksworked00','weeksworked01',

...			'weeksworked02','weeksworked03','weeksworked04']
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>>>	weeksworkedstacked	=

nls97[weeksworkedcols].\

...			stack(dropna=False)

>>>	weeksworkedstacked.loc[[1,2]]

originalid															

1											weeksworked00				53

												weeksworked01				52

												weeksworked02			nan

												weeksworked03				42

												weeksworked04				52

2											weeksworked00				51

												weeksworked01				52

												weeksworked02				44

												weeksworked03				45

												weeksworked04				52

dtype:	float64

3.	 Melt	the	data	again.

This	repeats	the	melt	operation	from	an	earlier	recipe	in	this	chapter:

>>>	weeksworkedmelted	=

nls97.reset_index().\

...			loc[:,['originalid']	+

weeksworkedcols].\
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...			melt(id_vars=['originalid'],

value_vars=weeksworkedcols,

...					var_name='year',

value_name='weeksworked')

>>>

>>>

weeksworkedmelted.loc[weeksworkedmelted.originalid.isin([1,2])].\

...			sort_values(['originalid','year'])

							originalid											year		weeksworked

377													1		weeksworked00											53

9361												1		weeksworked01											52

18345											1		weeksworked02										nan

27329											1		weeksworked03											42

36313											1		weeksworked04											52

8980												2		weeksworked00											51

17964											2		weeksworked01											52

26948											2		weeksworked02											44

35932											2		weeksworked03											45

44916											2		weeksworked04											52

4.	 Use	unstack	to	convert	the	stacked	data	from	long	to	wide:

>>>	weeksworked	=

weeksworkedstacked.unstack()

>>>	weeksworked.loc[[1,2]]
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weeksworked00		weeksworked01		weeksworked02		weeksworked03		weeksworked04

originalid																																																																											

1										53													52												nan													42													52

2										51													52													44													45													52

5.	 Use	pivot	to	convert	the	melted	data	from	long	to	wide.

pivot	is	slightly	more	complicated	than	unstack.	We	need	to	pass

arguments	to	do	the	reverse	of	melt,	telling	pivot	the	column	to	use

for	the	column	name	suffixes	(year)	and	where	to	grab	the	values	to	be

unmelted	(from	the	weeksworked	columns,	in	this	case):

>>>	weeksworked	=

weeksworkedmelted.pivot(index='originalid',

\

...			columns='year',	values=

['weeksworked']).reset_index()

>>>

>>>	weeksworked.columns	=

['originalid']	+	\

...			[col[1]	for	col	in

weeksworked.columns[1:]]

>>>

>>>

weeksworked.loc[weeksworked.originalid.isin([1,2])].T

																0		1

originalid						1		2
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weeksworked00		53	51

weeksworked01		52	52

weeksworked02	nan	44

weeksworked03		42	45

weeksworked04		52	52

This	returns	the	NLS	data	back	to	its	original	untidy	form.

How	it	works...
We	first	do	a	stack	and	a	melt	in	steps	2	and	3	respectively.	This	rotates
the	DataFrames	from	wide	to	long	format.	We	then	unstack	(step	4)	and	pivot
(step	5)	those	data	frames	to	rotate	them	back	from	long	to	wide.

unstack	uses	the	multi-index	that	is	created	by	the	stack	to	figure	out
how	to	rotate	the	data.

The	pivot	function	needs	for	us	to	indicate	the	index	column

(originalid),	the	column	whose	values	will	be	appended	to	the	column

names	(year),	and	the	name	of	the	columns	with	the	values	to	be	unmelted

(weeksworked).	Pivot	will	return	multilevel	column	names.	We	fix	that

by	pulling	from	the	second	level	with	[col[1]	for	col	in

weeksworked.columns[1:]].
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Chapter 	10: 	User-Defined
Funct ions	and	Classes 	 to
Automate	Data 	Cleaning
There	are	a	number	of	great	reasons	to	write	code	that	is	reusable.	When	we	step
back	from	the	particular	data	cleaning	problem	at	hand	and	consider	its
relationship	to	very	similar	problems,	we	can	actually	improve	our
understanding	of	the	key	issues	involved.	We	are	also	more	likely	to	address	a
task	systematically	when	we	set	our	sights	more	on	solving	it	for	the	long	term
than	on	the	before-lunch	solution.	This	has	the	additional	benefit	of	helping	us	to
disentangle	the	substantive	issues	from	the	mechanics	of	data	manipulation.

We	will	create	several	modules	to	accomplish	routine	data	cleaning	tasks	in	this
chapter.	The	functions	and	classes	in	these	modules	are	examples	of	code	that
can	be	reused	across	DataFrames,	or	for	one	DataFrame	over	an	extended	period
of	time.	These	functions	handle	many	of	the	tasks	we	discussed	in	the	first	nine
chapters,	but	in	a	manner	that	allows	us	to	reuse	our	code.

Specifically,	the	recipes	in	this	chapter	cover	the	following:

Functions	for	getting	a	first	look	at	our	data

Functions	for	displaying	summary	statistics	and	frequencies

Functions	for	identifying	outliers	and	unexpected	values

Functions	for	aggregating	or	combining	data

Classes	that	contain	the	logic	for	updating	series	values
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Classes	that	handle	non-tabular	data	structures

Technical 	 requirements
The	code	and	notebooks	for	this	chapter	are	available	on	GitHub	at
https://github.com/PacktPublishing/Python-Data-Cleaning-Cookbook

Funct ions	for 	get t ing	a 	 f i rs t
look	at 	our 	data
The	first	few	steps	we	take	after	we	import	our	data	into	a	pandas	DataFrame	are
pretty	much	the	same	regardless	of	the	characteristics	of	the	data.	We	almost
always	want	to	know	the	number	of	columns	and	rows	and	the	column	data
types,	and	see	the	first	few	rows.	We	also	might	want	to	view	the	index	and
check	whether	there	is	a	unique	identifier	for	DataFrame	rows.	These	discrete,
easily	repeatable	tasks	are	good	candidates	for	a	collection	of	functions	we	can
organize	into	a	module.

In	this	recipe,	we	will	create	a	module	with	functions	that	give	us	a	good	first
look	at	any	pandas	DataFrame.	A	module	is	simply	a	collection	of	Python	code
that	we	can	import	into	another	Python	program.	Modules	are	easy	to	reuse
because	they	can	be	referenced	by	any	program	with	access	to	the	folder	where
the	module	is	saved.

Getting	ready...
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We	create	two	files	in	this	recipe:	one	with	a	function	we	will	use	to	look	at	our
data	and	another	to	call	that	function.	Let's	call	the	file	with	the	function	we	will

use	basicdescriptives.py	and	place	it	in	a	subfolder	called

helperfunctions.

We	work	with	the	National	Longitudinal	Survey	(NLS)	data	in	this	recipe.

NOTE
The	NLS	is	conducted	by	the	United	States	Bureau	of	Labor	Statistics.	It	is
available	for	public	use	at	https://www.nlsinfo.org/investigator/pages/search.
The	survey	started	with	a	cohort	of	individuals	in	1997	who	were	born	between
1980	and	1985,	with	annual	follow-ups	each	year	through	2017.

How	to	do	it...
We	will	create	a	function	to	take	an	initial	look	at	a	DataFrame.

1.	 Create	the	basicdescriptives.py	file	with	the	function	we
want.

The	getfirstlook	function	will	return	a	dictionary	with	summary
information	on	a	DataFrame.	Save	the	file	in	the

helperfunctions	subfolder	as

basicdescriptives.py.	(You	can	also	just	download	the
code	from	the	GitHub	repository).	Also,	create	a	function

(displaydict)	to	pretty	up	the	display	of	a	dictionary:

>>>	import	pandas	as	pd
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>>>	def	getfirstlook(df,	nrows=5,

uniqueids=None):

...			out	=	{}

...			out['head']	=	df.head(nrows)

...			out['dtypes']	=	df.dtypes

...			out['nrows']	=	df.shape[0]

...			out['ncols']	=	df.shape[1]

...			out['index']	=	df.index

...			if	(uniqueids	is	not	None):

...					out['uniqueids']	=

df[uniqueids].nunique()

...			return	out

>>>	def	displaydict(dicttodisplay):

...			print(*(':	'.join(map(str,	x))

\

...					for	x	in

dicttodisplay.items()),

sep='\n\n')

2.	 Create	a	separate	file,	firstlook.py,	to	call	the

getfirstlook	function.

Import	the	pandas,	os,	and	sys	libraries,	and	load	the	NLS	data:

>>>	import	pandas	as	pd

>>>	import	os
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>>>	import	sys

>>>	nls97	=

pd.read_csv("data/nls97f.csv")

3.	 Import	the	basicdescriptives	module.

First,	append	the	helperfunctions	subfolder	to	the	Python	path.

We	can	then	import	basicdescriptives.	We	use	the	same

name	as	the	name	of	the	file	to	import	the	module.	We	create	an	alias,	bd,	to
make	it	easier	to	access	the	functions	in	the	module	later.	(We	can	use

importlib,	commented	out	here,	if	we	need	to	reload

basicdescriptives	because	we	have	made	some	changes	in
the	code	in	that	module).

>>>	sys.path.append(os.getcwd()	+

"/helperfunctions")

>>>	import	basicdescriptives	as	bd

>>>	#	import	importlib

>>>	#	importlib.reload(bd)

4.	 Take	a	first	look	at	the	NLS	data.

We	can	just	pass	the	DataFrame	to	the	getfirstlook	function	in

the	basicdescriptives	module	to	get	a	quick	summary	of	the

NLS	data.	The	displaydict	function	gives	us	prettier	printing	of
the	dictionary:

>>>	dfinfo	=	bd.getfirstlook(nls97)

>>>	bd.displaydict(dfinfo)
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head:											gender		birthmonth		...						colenroct17		originalid

personid																						...																													

100061				Female											5		...		1.

Not	enrolled								8245

100139						Male											9		...		1.

Not	enrolled								3962

100284						Male										11		...		1.

Not	enrolled								3571

100292						Male											4		...														NaN								2979

100583						Male											1		...		1.

Not	enrolled								8511

[5	rows	x	89	columns]

dtypes:

gender																				object

birthmonth																	int64

birthyear																		int64

highestgradecompleted				float64

maritalstatus													object

																										...			

colenrfeb16															object

colenroct16															object

colenrfeb17															object

colenroct17															object

originalid																	int64
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Length:	89,	dtype:	object

nrows:	8984

ncols:	89

index:	Int64Index([100061,	100139,

100284,	100292,	100583,	100833,

100931,

												...

												999543,	999698,	999963],

											dtype='int64',

name='personid',	length=8984)

5.	 Pass	values	to	the	nrows	and	uniqueids	parameters	of

getfirstlook.

The	two	parameters	default	to	values	of	5	and	None,	unless	we	provide
values:

>>>	dfinfo	=

bd.getfirstlook(nls97,2,'originalid')

>>>	bd.displaydict(dfinfo)

head:											gender		birthmonth		...						colenroct17		originalid

personid																						...																													

100061				Female											5		...		1.

Not	enrolled								8245

100139						Male											9		...		1.

Not	enrolled								3962
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[2	rows	x	89	columns]

dtypes:

gender																				object

birthmonth																	int64

birthyear																		int64

highestgradecompleted				float64

maritalstatus													object

																										...			

colenrfeb16															object

colenroct16															object

colenrfeb17															object

colenroct17															object

originalid																	int64

Length:	89,	dtype:	object

nrows:	8984

ncols:	89

index:	Int64Index([100061,	100139,

100284,	100292,	100583,	100833,

100931,

												...

												999543,	999698,	999963],

											dtype='int64',

name='personid',	length=8984)
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uniqueids:	8984

6.	 Work	with	some	of	the	returned	dictionary	keys	and	values.

We	can	also	display	selected	key	values	from	the	dictionary	returned	from

getfirstlook.	Show	the	number	of	rows	and	data	types,	and	check

to	see	whether	each	row	has	a	uniqueid	instance

(dfinfo['nrows']	==

dfinfo['uniqueids']):

>>>	dfinfo['nrows']

8984

>>>	dfinfo['dtypes']

gender																				object

birthmonth																	int64

birthyear																		int64

highestgradecompleted				float64

maritalstatus													object

																										...			

colenrfeb16															object

colenroct16															object

colenrfeb17															object

colenroct17															object

originalid																	int64

Length:	89,	dtype:	object
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>>>	dfinfo['nrows']	==

dfinfo['uniqueids']

True

Let's	take	a	closer	look	at	how	the	function	works	and	how	we	call	it.

How	it	works...
Almost	all	of	the	action	in	this	recipe	is	in	the	getfirstlook	function,

which	we	look	at	in	step	1.	We	place	the	getfirstlook	function	in	a

separate	file	that	we	name	basicdescriptives.py,	which	we
can	import	as	a	module	with	that	name	(minus	the	extension).

We	could	have	typed	the	function	into	the	file	we	were	using	and	called	it	from
there.	By	putting	it	in	a	module	instead,	we	can	call	it	from	any	file	that	has
access	to	the	folder	where	the	module	is	saved.	When	we	import	the

basicdescriptives	module	in	step	3,	we	load	all	of	the	code	in

basicdescriptives,	allowing	us	to	call	all	functions	in	that
module.

The	getfirstlook	function	returns	a	dictionary	with	useful
information	about	the	DataFrame	that	is	passed	to	it.	We	see	the	first	five	rows,
the	number	of	columns	and	rows,	the	data	types,	and	the	index.	By	passing	a

value	to	the	uniqueid	parameter,	we	also	get	the	number	of	unique	values
for	the	column.

By	adding	keyword	parameters	(nrows	and	uniqueid)	with	default

values,	we	improve	the	flexibility	of	getfirstlook,	without
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increasing	the	amount	of	effort	it	takes	to	call	the	function	when	we	do	not	need
the	extra	functionality.	In	the	first	call,	in	step	4,	we	do	not	pass	values	for

nrows	or	uniqueid,	sticking	with	the	default	values.	In	step	5,	we
indicate	that	we	only	want	two	rows	displayed	and	that	we	want	to	examine

unique	values	for	originalid.

There's	more...
The	point	of	this	recipe,	and	the	ones	that	follow	it,	is	not	to	provide	code	that
you	can	download	and	run	on	your	own	data,	though	you	are	certainly	welcome
to	do	that.	I	am	mainly	trying	to	demonstrate	how	you	can	collect	your	favorite
approaches	to	data	cleaning	in	handy	modules,	and	how	this	allows	easy	code
reuse.	The	specific	code	here	is	just	a	serving	suggestion,	if	you	will.

Whenever	we	use	a	combination	of	positional	and	keyword	parameters,	the
positional	parameters	must	go	first.

Funct ions	for 	displaying
summary	s ta t is t ics 	and
frequencies
During	the	first	few	days	of	working	with	a	DataFrame,	we	try	to	get	a	good
sense	of	the	distribution	of	continuous	variables	and	counts	for	categorical
variables.	We	also	often	do	counts	by	selected	groups.	Although	pandas	and

NumPy	have	many	built-in	methods	for	these	purposes	–	describe,

mean,	valuecounts,	crosstab,	and	so	on	–	data	analysts
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often	have	preferences	for	how	they	work	with	these	tools.	If,	for	example,	an
analyst	finds	that	she	usually	needs	to	see	more	percentiles	than	those	generated

by	describe,	she	can	use	her	own	function	instead.	We	will	create	user-
defined	functions	for	displaying	summary	statistics	and	frequencies	in	this
recipe.

Getting	ready
We	will	be	working	with	the	basicdescriptives	module	again
in	this	recipe.	All	of	the	functions	we	will	define	are	saved	in	that	module.	We
continue	to	work	with	the	NLS	data.

How	to	do	it...
We	will	use	functions	we	create	to	generate	summary	statistics	and	counts:

1.	 Create	the	gettots	function	in	the	basicdescriptives
module.

The	function	takes	a	pandas	DataFrame	and	creates	a	dictionary	with	selected
summary	statistics.	It	returns	a	pandas	DataFrame:

>>>	def	gettots(df):

...			out	=	{}

...			out['min']	=	df.min()

...			out['per15']	=

df.quantile(0.15)

...			out['qr1']	=	df.quantile(0.25)
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...			out['med']	=	df.median()

...			out['qr3']	=	df.quantile(0.75)

...			out['per85']	=

df.quantile(0.85)

...			out['max']	=	df.max()

...			out['count']	=	df.count()

...			out['mean']	=	df.mean()

...			out['iqr']	=	out['qr3']-

out['qr1']

...			return	pd.DataFrame(out)

2.	 Import	the	pandas,	os,	and	sys	libraries.

Do	this	from	a	different	file,	which	you	can	call

taking_measure.py:

>>>	import	pandas	as	pd

>>>	import	os

>>>	import	sys

>>>	nls97	=

pd.read_csv("data/nls97f.csv")

>>>	nls97.set_index('personid',

inplace=True)

3.	 Import	the	basicdescriptives	module:

>>>	sys.path.append(os.getcwd()	+

"/helperfunctions")
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>>>	import	basicdescriptives	as	bd

4.	 Show	summary	statistics	for	continuous	variables.

Use	the	gettots	function	from	the	basicdescriptives
module	that	we	created	in	step	1:

>>>

bd.gettots(nls97[['satverbal','satmath']]).T

								satverbal						satmath

min						14.00000					7.000000

per15			390.00000			390.000000

qr1					430.00000			430.000000

med					500.00000			500.000000

qr3					570.00000			580.000000

per85			620.00000			621.000000

max					800.00000			800.000000

count		1406.00000		1407.000000

mean				499.72404			500.590618

iqr					140.00000			150.000000

>>>

bd.gettots(nls97.filter(like="weeksworked"))

															min		per15			qr1		...		count							mean			iqr

weeksworked00		0.0				0.0			5.0		...			8603		26.417761		45.0

weeksworked01		0.0				0.0		10.0		...			8564		29.784096		41.0

weeksworked02		0.0				0.0		13.0		...			8556		31.805400		39.0
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weeksworked03		0.0				0.0		14.0		...			8490		33.469611		38.0

weeksworked04		0.0				1.0		18.0		...			8458		35.104635		34.0

...

weeksworked15		0.0				0.0		33.0		...			7389		39.605630		19.0

weeksworked16		0.0				0.0		23.0		...			7068		39.127476		30.0

weeksworked17		0.0				0.0		37.0		...			6670		39.016642		15.0

5.	 Create	a	function	to	count	missing	values	by	columns	and	rows.

The	getmissings	function	will	take	a	DataFrame	and	a	parameter
for	showing	percentages	or	counts.	Return	two	series,	one	with	the	missing
values	for	each	column	and	the	other	with	missing	values	by	row.	Save	the

function	in	the	basicdescriptives	module:

>>>	def	getmissings(df,

byrowperc=False):

...			return	df.isnull().sum(),\

...					df.isnull().sum(axis=1).value_counts(normalize=byrowperc).sort_index()

6.	 Call	the	getmissings	function.

Call	it	first	with	byrowperc	(the	second	parameter)	set	to	True.
This	will	show	the	percentage	of	rows	with	the	associated	number	of	missing

values.	For	example,	the	missingbyrows	value	shows	that	73.9%

of	rows	have	0	missing	values	for	weeksworked16	and

weeksworked17.	Call	it	again,	leaving	byrowperc	at	its

default	value	of	False,	to	get	counts	instead:
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>>>	missingsbycols,	missingsbyrows	=

bd.getmissings(nls97[['weeksworked16','weeksworked17']],

True)

>>>	missingsbycols

weeksworked16				1916

weeksworked17				2314

dtype:	int64

>>>	missingsbyrows

0				0.739203

1				0.050757

2				0.210040

dtype:	float64

>>>	missingsbycols,	missingsbyrows	=

bd.getmissings(nls97[['weeksworked16','weeksworked17']])

>>>	missingsbyrows

0				6641

1					456

2				1887

dtype:	int64

7.	 Create	a	function	to	calculate	frequencies	for	all	categorical	variables.

The	makefreqs	function	loops	through	all	columns	with	the	category

data	type	in	the	passed	DataFrame,	running	value_counts	on	each

one.	The	frequencies	are	saved	to	the	file	indicated	by	outfile:
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>>>	def	makefreqs(df,	outfile):

...			freqout	=	open(outfile,	'w')

...			for	col	in

df.select_dtypes(include=

["category"]):

...					print(col,	"-----------------

-----",	"frequencies",

...					df[col].value_counts().sort_index(),"percentages",

...					df[col].value_counts(normalize=True).sort_index(),

...					sep="\n\n",	end="\n\n\n",

file=freqout)

...			freqout.close()

8.	 Call	the	makefreqs	function.

First	change	data	type	of	each	object	column	to	category.	This	call	runs

value_counts	on	category	data	columns	in	the	NLS	data	frame	and

saves	the	frequencies	to	nlsfreqs.txt	in	the	views	subfolder
of	the	current	folder.

>>>	nls97.loc[:,	nls97.dtypes	==

'object']	=	\

...			nls97.select_dtypes(['object']).

\

...			apply(lambda	x:

x.astype('category'))
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>>>	bd.makefreqs(nls97,

"views/nlsfreqs.txt")

9.	 Create	a	function	to	get	counts	by	groups.

The	getcnts	function	counts	the	number	of	rows	for	each	combination

of	column	values	in	cats,	a	list	of	column	names.	It	also	counts	the
number	of	rows	for	each	combination	of	column	values	excluding	the	final

column	in	cats.	This	provides	a	total	across	all	values	of	the	final	column.
(The	next	step	shows	what	this	looks	like).

>>>	def	getcnts(df,	cats,

rowsel=None):

...			tots	=	cats[:-1]

...			catcnt	=

df.groupby(cats).size().reset_index(name='catcnt')

...			totcnt	=

df.groupby(tots).size().reset_index(name='totcnt')

...			percs	=	pd.merge(catcnt,

totcnt,	left_on=tots,

...					right_on=tots,	how="left")

...			percs['percent']	=	percs.catcnt

/	percs.totcnt

...			if	(rowsel	is	not	None):

...					percs	=

percs.loc[eval("percs."	+

rowsel)]

Telegram Channel @nettrain



...			return	percs

10.	 Pass	the	marital	status,	gender,	and	college	enrollment	columns	to	the

getcnts	function.

This	returns	a	DataFrame	with	counts	for	each	column	value	combination,	as
well	as	counts	for	all	combinations	excluding	the	last	column.	This	is	used	to
calculate	percentages	within	groups.	For	example,	393	respondents	were
divorced	and	female	and	317	of	those	(or	81%)	were	not	enrolled	in	college	in
October	of	2000:

>>>	bd.getcnts(nls97,

['maritalstatus','gender','colenroct00'])

			maritalstatus		gender									colenroct00		catcnt		totcnt			percent

0							Divorced		Female					1.	Not

enrolled					317					393		0.806616

1							Divorced		Female		2.	2-year

college							35					393		0.089059

2							Divorced		Female			3.	4-year

college						41					393		0.104326

3							Divorced				Male					1.	Not

enrolled					238					270		0.881481

4							Divorced				Male		2.	2-year

college							15					270		0.055556

..											...					...																	...					...					...							...

25							Widowed		Female		2.	2-year

college								1						19		0.052632
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26							Widowed		Female			3.	4-year

college							2						19		0.105263

27							Widowed				Male					1.	Not

enrolled							3							4		0.750000

28							Widowed				Male		2.	2-year

college								0							4		0.000000

29							Widowed				Male			3.	4-year

college							1							4		0.250000

11.	 Use	the	rowsel	parameter	of	getcnts	to	limit	the	output	to
specific	rows:

>>>	bd.getcnts(nls97,

['maritalstatus','gender','colenroct00'],

"colenroct00.str[0:1]=='1'")

				maritalstatus		gender						colenroct00		catcnt		totcnt			percent

0								Divorced		Female		1.	Not

enrolled					317					393		0.806616

3								Divorced				Male		1.	Not

enrolled					238					270		0.881481

6									Married		Female		1.	Not

enrolled				1168				1636		0.713936

9									Married				Male		1.	Not

enrolled				1094				1430		0.765035

12		Never-married		Female		1.	Not

enrolled				1094				1307		0.837031
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15		Never-married				Male		1.	Not

enrolled				1268				1459		0.869088

18						Separated		Female		1.	Not

enrolled						66						79		0.835443

21						Separated				Male		1.	Not

enrolled						67						75		0.893333

24								Widowed		Female		1.	Not

enrolled						16						19		0.842105

27								Widowed				Male		1.	Not

enrolled							3							4		0.750000

These	steps	demonstrate	how	to	create	functions	and	use	them	to	generate
summary	statistics	and	frequencies.

How	it	works...
In	step	1,	we	create	a	function	that	calculates	descriptive	statistics	for	all
columns	in	a	DataFrame,	returning	those	results	in	a	summary	DataFrame.	Most

of	the	statistics	can	be	generated	with	the	describe	method,	but	we	add	a
few	statistics	–	the	15th	percentile,	the	85th	percentile,	and	the	interquartile
range.	We	call	that	function	twice	in	step	4,	the	first	time	for	the	SAT	verbal	and
math	scores	and	the	second	time	for	all	weeks	worked	columns.

Steps	5	and	6	create	and	call	a	function	that	shows	the	number	of	missing	values
for	each	column	in	the	passed	DataFrame.	It	also	counts	missing	values	for	each
row,	displaying	the	frequency	of	missing	values.	The	frequency	of	missing
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values	by	row	can	also	be	displayed	as	a	percentage	of	all	rows	by	passing	a

value	of	True	to	the	byrowperc	parameter.

Steps	7	and	8	produce	a	text	file	with	frequencies	for	all	categorical	variables	in
the	passed	DataFrame.	We	just	loop	through	all	columns	with	the	category	data

type	and	run	value_counts.	Since	often	the	output	is	long,	we	save	it
to	a	file.	It	is	also	good	to	have	frequencies	saved	somewhere	for	later	reference.

The	getcnts	function	we	create	in	step	9	and	call	in	steps	10	and	11	is	a

tad	idiosyncratic.	pandas	has	a	very	useful	crosstab	function,	which	I
use	frequently.	But	I	often	need	a	no-fuss	way	to	look	at	group	counts	and

percentages	for	subgroups	within	groups.	The	getcnts	function	does	that.

There's	more...
A	function	can	be	very	helpful	even	when	it	does	not	do	very	much.	There	is	not

much	code	in	the	getmissings	function,	but	I	check	for	missing	values
so	frequently	that	the	small	time-savings	are	significant	cumulatively.	It	also
reminds	me	to	check	for	missing	values	by	column	and	by	row.

See	also...
We	explore	pandas'	tools	for	generating	summary	statistics	and	frequencies	in
Chapter	3,	Taking	the	Measure	of	Your	Data.
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Funct ions	for 	 ident i fying
out l iers 	and	unexpected	values
If	I	had	to	pick	one	data	cleaning	area	where	I	find	reusable	code	most
beneficial,	it	would	be	in	the	identification	of	outliers	and	unexpected	values.
This	is	because	our	prior	assumptions	often	lead	us	to	the	central	tendency	of	a
distribution,	rather	than	to	the	extremes.	Quickly	–	think	of	a	cat.	Unless	you
were	thinking	about	a	particular	cat	in	your	life,	an	image	of	a	generic	feline
between	8	and	10	pounds	probably	came	to	mind;	not	one	that	is	6	pounds	or	22
pounds.

We	often	need	to	be	more	deliberate	to	elevate	extreme	values	to	consciousness.
This	is	where	having	a	standard	set	of	diagnostic	functions	to	run	on	our	data	is
very	helpful.	We	can	run	these	functions	even	if	nothing	in	particular	triggers	us
to	run	them.	This	recipe	provides	examples	of	functions	that	we	can	use
regularly	to	identify	outliers	and	unexpected	values.

Getting	ready
We	will	create	two	files	in	this	recipe,	one	with	the	functions	we	will	use	to
check	for	outliers	and	another	with	the	code	we	will	use	to	call	those	functions.

Let's	call	the	file	with	the	functions	we	will	use	outliers.py,	and

place	it	in	a	subfolder	called	helperfunctions.

You	will	need	the	matplotlib	and	scipy	libraries,	in	addition	to

pandas,	to	run	the	code	in	this	recipe.	You	can	install	matplotlib	and

scipy	by	entering	pip	install	matplotlib	and	pip
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install	scipy	in	a	Terminal	client	or	in	Windows

PowerShell.	You	will	also	need	the	pprint	utility,	which	you	can	install

with	pip	install	pprint.

We	will	work	with	the	NLS	and	COVI-19	data	in	this	recipe.	The	Covid	data	has
one	row	per	country,	with	cumulative	cases	and	deaths	for	that	country.

NOTE
Our	World	in	Data	provides	Covid-19	public	use	data	at
https://ourworldindata.org/coronavirus-source-data.	The	data	used	in	this	recipe
were	downloaded	on	July	18,	2020.

How	to	do	it...
We	create	and	call	functions	to	check	the	distribution	of	variables,	list	extreme
values,	and	visualize	a	distribution:

1.	 Import	the	pandas,	os,	sys,	and	pprint	libraries.

Also,	load	the	NLS	and	Covid	data:

>>>	import	pandas	as	pd

>>>	import	os

>>>	import	sys

>>>	import	pprint

>>>	nls97	=

pd.read_csv("data/nls97f.csv")
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>>>	nls97.set_index('personid',

inplace=True)

>>>	covidtotals	=

pd.read_csv("data/covidtotals720.csv")

2.	 Create	a	function	to	show	some	important	properties	of	a	distribution.

The	getdistprops	function	takes	a	series	and	generates	measures
of	central	tendency,	shape,	and	spread.	The	function	returns	a	dictionary	with
these	measures.	It	also	handles	situations	where	the	Shapiro	test	for	normality

does	not	return	a	value.	It	will	not	add	keys	for	normstat	and

normpvalue	when	that	happens.	Save	the	function	in	a	file	named

outliers.py	in	the	helperfunctions	subfolder	of	the

current	directory.	(Also	load	the	pandas,	matplotlib,

scipy,	and	math	libraries	we	will	need	for	this	and	other	functions	in
this	module.)

>>>	import	pandas	as	pd

>>>	import	matplotlib.pyplot	as	plt

>>>	import	scipy.stats	as	scistat

>>>	import	math

>>>

>>>	def	getdistprops(seriestotest):

...			out	=	{}

...			normstat,	normpvalue	=

scistat.shapiro(seriestotest)

...			if	(not	math.isnan(normstat)):
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...					out['normstat']	=	normstat

...					if	(normpvalue>=0.05):

...							out['normpvalue']	=

str(round(normpvalue,	2))	+	":

Accept	Normal"

...					elif	(normpvalue<0.05):

...							out['normpvalue']	=

str(round(normpvalue,	2))	+	":

Reject	Normal"

...			out['mean']	=

seriestotest.mean()

...			out['median']	=

seriestotest.median()

...			out['std']	=	seriestotest.std()

...			out['kurtosis']	=

seriestotest.kurtosis()

...			out['skew']	=

seriestotest.skew()

...			out['count']	=

seriestotest.count()

...			return	out

3.	 Pass	the	total	cases	per	million	in	population	series	to	the

getdistprops	function.
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The	skew	and	kurtosis	values	suggest	that	the	distribution	of

total_cases_pm	has	significantly	positive	skew	and	fatter	tails
than	a	normally	distributed	variable.	The	Shapiro	test	of	normality

(normpvalue)	confirms	this.	(Use	pprint	to	improve	the	display

of	the	dictionary	returned	by	getdistprops).

>>>	dist	=

ol.getdistprops(covidtotals.total_cases_pm)

>>>	pprint.pprint(dist)

{'count':	209,

'kurtosis':	26.137524276840452,

'mean':	2297.0221435406693,

'median':	868.866,

'normpvalue':	'0.0:	Reject	Normal',

'normstat':	0.5617035627365112,

'skew':	4.284484653881833,

'std':	4039.840202653782}

4.	 Create	a	function	to	list	the	outliers	in	a	DataFrame.

The	getoutliers	function	iterates	over	all	columns	in

sumvars.	It	determines	outlier	thresholds	for	those	columns,	setting
them	at	1.5	times	the	interquartile	range	(the	distance	between	the	first	and
third	quartile)	below	the	first	quartile	or	above	the	third	quartile.	It	then	selects
all	rows	with	values	above	the	high	threshold	or	below	the	low	threshold.	It

adds	columns	that	indicate	the	variable	examined	(varname)	for	outliers
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and	the	threshold	levels.	It	also	includes	columns	in	the	othervars	list
in	the	DataFrame	it	returns:

>>>	def	getoutliers(dfin,	sumvars,

othervars):

...			dfin	=	dfin[sumvars	+

othervars]

...			dfout	=

pd.DataFrame(columns=dfin.columns,

data=None)

...			dfsums	=	dfin[sumvars]

...			for	col	in	dfsums.columns:

...					thirdq,	firstq	=

dfsums[col].quantile(0.75),\

...							dfsums[col].quantile(0.25)

...					interquartilerange	=	1.5*

(thirdq-firstq)

...					outlierhigh,	outlierlow	=

interquartilerange+thirdq,\

...							firstq-interquartilerange

...					df	=

dfin.loc[(dfin[col]>outlierhigh)

|	\

...							(dfin[col]<outlierlow)]
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...					df	=	df.assign(varname	=	col,

threshlow	=	outlierlow,\

...							threshhigh	=	outlierhigh)

...					dfout	=	pd.concat([dfout,

df])

...			return	dfout

5.	 Call	the	getoutlier	function.

Pass	a	list	of	columns	to	check	for	outliers	(sumvars)	and	another	list	of

columns	to	include	in	the	returned	DataFrame	(othervars).	Show	the
count	of	outliers	for	each	variable	and	view	the	outliers	for	SAT	math:

>>>	sumvars	=

['satmath','wageincome']

>>>	othervars	=

['originalid','highestdegree','gender','maritalstatus']

>>>	outliers	=	ol.getoutliers(nls97,

sumvars,	othervars)

>>>

outliers.varname.value_counts(sort=False)

satmath								10

wageincome				260

Name:	varname,	dtype:	int64

>>>

outliers.loc[outliers.varname=='satmath',

othervars	+	sumvars]
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							originalid			highestdegree		...

satmath	wageincome

223058							6696									0.

None		...				46.0				30000.0

267254							1622		2.	High

School		...				48.0			100000.0

291029							7088		2.	High

School		...				51.0								NaN

337438								159		2.	High

School		...			200.0								NaN

399109							3883		2.	High

School		...				36.0								NaN

448463								326				4.

Bachelors		...				47.0								NaN

738290							7705									0.

None		...					7.0								NaN

748274							3394				4.

Bachelors		...				42.0								NaN

799095								535						5.

Masters		...				59.0			120000.0

955430							2547		2.	High

School		...			200.0								NaN

[10	rows	x	6	columns]

>>>

outliers.to_excel("views/nlsoutliers.xlsx")
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6.	 Create	a	function	to	generate	histograms	and	boxplots.

The	makeplot	function	takes	a	series,	title,	and	label	for	the	x-axis.	The
default	plot	is	set	as	a	histogram:

>>>	def	makeplot(seriestoplot,	title,

xlabel,	plottype="hist"):

...			if	(plottype=="hist"):

...					plt.hist(seriestoplot)

...					plt.axvline(seriestoplot.mean(),

color='red',\

...							linestyle='dashed',

linewidth=1)

...					plt.xlabel(xlabel)

...					plt.ylabel("Frequency")

...			elif	(plottype=="box"):

...					plt.boxplot(seriestoplot.dropna(),

labels=[xlabel])

...			plt.title(title)

...			plt.show()

7.	 Call	the	makeplot	function	to	create	a	histogram:

>>>	ol.makeplot(nls97.satmath,

"Histogram	of	SAT	Math",	"SAT

Math")

This	generates	the	following	histogram:
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Figure	10.1	–	Frequencies	of	SAT	math	values

8.	 Use	the	makeplot	function	to	create	a	boxplot:

>>>	ol.makeplot(nls97.satmath,

"Boxplot	of	SAT	Math",	"SAT

Math",	"box")

This	generates	the	following	boxplot:
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Figure	10.2	–	Show	the	median,	interquartile	range,	and	outlier	thresholds	with	a
boxplot

The	preceding	steps	show	how	we	can	develop	reusable	code	to	check	for
outliers	and	unexpected	values.

How	it	works...
We	start	by	getting	the	key	attributes	of	a	distribution,	including	the	mean,
median,	standard	deviation,	skew,	and	kurtosis.	We	do	this	by	passing	a	series	to

the	getdistprop	function	in	step	3,	getting	back	a	dictionary	with
these	measures.

The	function	in	step	4	selects	rows	where	one	of	the	columns	in	sumvars
has	a	value	that	is	an	outlier.	It	also	includes	the	values	for	the	columns	in
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othervars	and	the	threshold	amounts	in	the	DataFrame	it	returns.

We	create	a	function	in	step	6	that	makes	it	easier	to	create	a	simple	histogram	or

boxplot.	The	functionality	of	matplotlib	is	great,	but	it	can	take	a
minute	to	remind	ourselves	of	the	syntax	when	we	just	want	to	create	a	simple
histogram	or	boxplot.	We	can	avoid	that	by	defining	a	function	with	a	few
routine	parameters:	series,	title,	and	x-label.	We	call	that	function	in	steps	7	and
8.

There's	more...
We	do	not	want	to	do	too	much	work	with	a	continuous	variable	before	getting	a
good	sense	of	how	its	values	are	distributed;	what	are	the	central	tendency	and
shape	of	the	distribution?	If	we	run	something	like	the	functions	in	this	recipe	for
key	continuous	variables,	we	would	be	off	to	a	good	start.

The	relatively	painless	portability	of	Python	modules	makes	this	pretty	easy	to

do.	If	we	wanted	to	use	the	outliers	module	that	we	use	in	this	example,

we	would	just	need	to	save	the	outliers.py	file	to	a	folder	that	our
program	can	access,	add	that	folder	to	the	Python	path,	and	import	it.

Usually,	when	we	are	inspecting	an	extreme	value,	we	want	to	have	a	better	idea
of	the	context	of	other	variables	that	might	explain	why	the	value	is	extreme.	For
example,	a	height	of	178	centimeters	is	not	an	outlier	for	an	adult	male,	but	it
definitely	is	for	a	9-year	old.	The	DataFrame	produced	in	steps	4	and	5	provides
us	with	both	the	outlier	values	and	other	data	that	might	be	relevant.	Saving	the
data	to	an	Excel	file	makes	it	easy	to	inspect	outlier	rows	later	or	share	that	data
with	others.
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See	also
We	go	into	a	fair	bit	of	detail	on	detecting	outliers	and	unexpected	values	in
Chapter	4,	Identifying	Missing	Values	and	Outliers	in	Subsets	of	Data.	We
examine	histograms,	boxplots,	and	many	other	visualizations	in	Chapter	5,
Using	Visualizations	for	the	Identification	of	Unexpected	Values.

Funct ions	for 	aggregat ing	or
combining	data
Most	data	analysis	projects	require	some	reshaping	of	data.	We	may	need	to
aggregate	by	group	or	combine	data	vertically	or	horizontally.	We	have	to	do
similar	tasks	each	time	we	prepare	our	data	for	this	reshaping.	We	can	routinize
some	of	these	tasks	with	functions,	improving	both	the	reliability	of	our	code
and	our	efficiency	in	getting	the	work	done.	We	sometimes	need	to	check	for
mismatches	in	merge-by	columns	before	doing	a	merge,	check	for	unexpected
changes	in	values	in	panel	data	from	one	period	to	the	next	before	aggregating,
or	concatenate	a	number	of	files	at	once	and	verify	that	data	has	been	combined
accurately.

These	are	just	a	few	examples	of	the	kind	of	data	aggregation	and	combining
tasks	that	might	lend	themselves	to	a	more	generalized	coding	solution.	In	this
recipe,	we	define	functions	that	can	help	with	these	tasks.

Getting	ready
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We	will	work	with	the	Covid	daily	data	in	this	recipe.	This	data	comprises	new
cases	and	new	deaths	for	each	country	by	day.	We	will	also	work	with	land
temperatures	data	for	several	countries	in	2019.	The	data	for	each	country	is	in	a
separate	file	and	has	one	row	per	weather	station	in	that	country	for	each	month.

NOTE
The	land	temperatures	data	is	taken	from	the	Global	Historical	Climatology
Network	integrated	database,	which	is	made	available	for	public	use	by	the
United	States	National	Oceanic	and	Atmospheric	Administration	at
https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-
datasets/global-historical-climatology-network-monthly-version-4.

How	to	do	it...
We	will	use	functions	to	aggregate	data,	combine	data	vertically,	and	check
merge-by	values:

1.	 Import	the	pandas,	os,	and	sys	libraries:

>>>	import	pandas	as	pd

>>>	import	os

>>>	import	sys

2.	 Create	a	function	(adjmeans)	to	aggregate	values	by	period	for	a	group.

Sort	the	values	in	the	passed	DataFrame	by	group	(byvar)	and	then

period.	Convert	the	DataFrame	values	to	a	NumPy	array.	Loop	through

the	values,	do	a	running	tally	of	the	var	column,	and	set	the	running	tally
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back	to	0	when	you	reach	a	new	value	for	byvar.	Before	aggregating,
check	for	extreme	changes	in	values	from	one	period	to	the	next.	The

changeexclude	parameter	indicates	the	size	of	a	change	from	one
period	to	the	next	that	should	be	considered	extreme.	The

excludetype	parameter	indicates	whether	the

changeexclude	value	is	an	absolute	amount	or	a	percentage	of	the

var	column's	mean.	Save	the	function	in	a	file	called

combineagg.py	in	the	helperfunctions	subfolder:

>>>	def	adjmeans(df,	byvar,	var,

period,	changeexclude=None,

excludetype=None):

...			df	=	df.sort_values([byvar,

period])

...			df	=	df.dropna(subset=[var])

...			#	iterate	using	numpy	arrays

...			prevbyvar	=	'ZZZ'

...			prevvarvalue	=	0

...			rowlist	=	[]

...			varvalues	=	df[[byvar,

var]].values

...			#	convert	exclusion	ratio	to

absolute	number

...			if	(excludetype=="ratio"	and

changeexclude	is	not	None):
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...					changeexclude	=

df[var].mean()*changeexclude

...			#	loop	through	variable	values

...			for	j	in	range(len(varvalues)):

...					byvar	=	varvalues[j][0]

...					varvalue	=	varvalues[j][1]

...					if	(prevbyvar!=byvar):

...							if	(prevbyvar!='ZZZ'):

...									rowlist.append({'byvar':prevbyvar,

'avgvar':varsum/byvarcnt,\

...											'sumvar':varsum,

'byvarcnt':byvarcnt})

...							varsum	=	0

...							byvarcnt	=	0

...							prevbyvar	=	byvar

...					#	exclude	extreme	changes	in

variable	value

...					if	((changeexclude	is	None)

or	(0	<=	abs(varvalue-

prevvarvalue)	\

...							<=	changeexclude)	or

(byvarcnt==0)):

...							varsum	+=	varvalue

...							byvarcnt	+=	1
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...					prevvarvalue	=	varvalue

...			rowlist.append({'byvar':prevbyvar,

'avgvar':varsum/byvarcnt,	\

...					'sumvar':varsum,

'byvarcnt':byvarcnt})

...			return	pd.DataFrame(rowlist)

3.	 Import	the	combineagg	module:

>>>	sys.path.append(os.getcwd()	+

"/helperfunctions")

>>>	import	combineagg	as	ca

4.	 Load	the	DataFrames:

>>>	coviddaily	=

pd.read_csv("data/coviddaily720.csv")

>>>	ltbrazil	=

pd.read_csv("data/ltbrazil.csv")

>>>	countries	=

pd.read_csv("data/ltcountries.csv")

>>>	locations	=

pd.read_csv("data/ltlocations.csv")

5.	 Call	the	adjmeans	function	to	summarize	panel	data	by	group	and	time
period.

Indicate	that	we	want	a	summary	of	new_cases	by	location:
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>>>	ca.adjmeans(coviddaily,

'location','new_cases','casedate')

														byvar						avgvar			sumvar		byvarcnt

0							Afghanistan		186.221622		34451.0							185

1											Albania			26.753968			3371.0							126

2											Algeria			98.484211		18712.0							190

3											Andorra				7.066116				855.0							121

4												Angola				4.274336				483.0							113

..														...									...						...							...

204									Vietnam				1.937173				370.0							191

205		Western

Sahara				6.653846				519.0								78

206											Yemen			14.776596			1389.0								94

207										Zambia			16.336207			1895.0							116

208								Zimbabwe				8.614035				982.0							114

[209	rows	x	4	columns]

6.	 Call	the	adjmeans	function	again,	this	time	excluding	values	where

new_cases	go	up	or	down	by	more	than	150	from	one	day	to	the	next.
Notice	some	reduction	in	the	counts	for	some	countries:

>>>	ca.adjmeans(coviddaily,

'location','new_cases','casedate',

150)

														byvar						avgvar			sumvar		byvarcnt

0							Afghanistan		141.968750		22715.0							160
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1											Albania			26.753968			3371.0							126

2											Algeria			94.133690		17603.0							187

3											Andorra				7.066116				855.0							121

4												Angola				4.274336				483.0							113

..														...									...						...							...

204									Vietnam				1.937173				370.0							191

205		Western

Sahara				2.186667				164.0								75

206											Yemen			14.776596			1389.0								94

207										Zambia			11.190909			1231.0							110

208								Zimbabwe				8.614035				982.0							114

[209	rows	x	4	columns]

7.	 Create	a	function	to	check	values	for	merge-by	columns	on	one	file	but	not
another.

The	checkmerge	function	does	an	outer	join	of	two	DataFrames
passed	to	it,	using	the	third	and	fourth	parameters	for	the	merge-by	columns
for	the	first	and	second	DataFrame	respectively.	It	then	does	a	crosstab	that
shows	the	number	of	rows	with	merge-by	values	in	both	DataFrames	and
those	in	one	DataFrame	but	not	the	other.	It	also	shows	up	to	20	rows	of	data
for	merge-by	values	found	in	just	one	file:

>>>	def	checkmerge(dfleft,	dfright,

mergebyleft,	mergebyright):

...			dfleft['inleft']	=	"Y"

...			dfright['inright']	=	"Y"
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...			dfboth	=

pd.merge(dfleft[[mergebyleft,'inleft']],\

...					dfright[[mergebyright,'inright']],

left_on=[mergebyleft],\

...					right_on=[mergebyright],

how="outer")

...			dfboth.fillna('N',

inplace=True)

...			print(pd.crosstab(dfboth.inleft,

dfboth.inright))

...			print(dfboth.loc[(dfboth.inleft=='N')

|

(dfboth.inright=='N')].head(20))

8.	 Call	the	checkmerge	function.

Check	a	merge	between	the	countries	land	temperatures	DataFrame

(which	has	one	row	per	country)	and	the	locations	DataFrame
(which	has	one	row	for	each	weather	station	in	each	country).	The	crosstab
shows	that	27,472	merge-by	column	values	are	in	both	DataFrames,	two	are	in

the	countries	file	and	not	in	the	locations	file,	and	one	is	in

the	locations	file	but	not	the	countries	file:

>>>	ca.checkmerge(countries.copy(),

locations.copy(),\

...			"countryid",	"countryid")

inright		N						Y
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inleft											

N								0						1

Y								2		27472

						countryid	inleft	inright

9715									LQ						Y							N

13103								ST						Y							N

27474								FO						N							Y

9.	 Create	a	function	that	concatenates	all	CSV	files	in	a	folder.

This	function	loops	through	all	of	the	filenames	in	the	specified	folder.	It	uses

the	endswith	method	to	check	that	the	filename	has	a	CSV	file
extension.	It	then	loads	the	DataFrame	and	prints	out	the	number	of	rows.

Finally,	it	uses	concat	to	append	the	rows	of	the	new	DataFrame	to	the
rows	already	appended.	If	column	names	on	a	file	are	different,	it	prints	those
column	names:

>>>	def	addfiles(directory):

...			dfout	=	pd.DataFrame()

...			columnsmatched	=	True

...			#	loop	through	the	files

...			for	filename	in

os.listdir(directory):

...					if	filename.endswith(".csv"):

...							fileloc	=

os.path.join(directory,

filename)
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...							#	open	the	next	file

...							with	open(fileloc)	as	f:

...									dfnew	=

pd.read_csv(fileloc)

...									print(filename	+	"	has	"

+	str(dfnew.shape[0])	+	"

rows.")

...									dfout	=	pd.concat([dfout,

dfnew])

...									#	check	if	current	file

has	any	different	columns

...									columndiff	=

dfout.columns.symmetric_difference(dfnew.columns)

...									if	(not

columndiff.empty):

...											print("",	"Different

column	names	for:",

																filename,\

...													columndiff,	"",

sep="\n")

...											columnsmatched	=	False

...			print("Columns	Matched:",

columnsmatched)

...			return	dfout
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10.	 Use	the	addfiles	function	to	concatenate	all	of	the	countries
land	temperatures	files.

It	looks	like	the	file	for	Oman	(ltoman)	is	slightly	different.	It	does	not

have	the	latabs	column.	Notice	that	the	counts	for	each	country	in	the
combined	DataFrame	match	the	number	of	rows	for	each	country	file:

>>>	landtemps	=

ca.addfiles("data/ltcountry")

ltpoland.csv	has	120	rows.

ltjapan.csv	has	1800	rows.

ltindia.csv	has	1056	rows.

ltbrazil.csv	has	1104	rows.

ltcameroon.csv	has	48	rows.

ltoman.csv	has	288	rows.

Different	column	names	for:

ltoman.csv

Index(['latabs'],	dtype='object')

ltmexico.csv	has	852	rows.

Columns	Matched:	False

>>>	landtemps.country.value_counts()

Japan							1800

Brazil						1104

India							1056

Mexico							852
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Oman									288

Poland							120

Cameroon						48

Name:	country,	dtype:	int64

The	preceding	steps	demonstrate	how	we	can	systematize	some	of	our	messy
data	reshaping	work.	I	am	sure	you	can	think	of	a	number	of	other	functions	that
might	be	helpful.

How	it	works...
You	may	have	noticed	that	in	the	adjmeans	function	we	define	in	step	2,

we	actually	do	not	append	our	summary	of	the	var	column	values	until	we	get

to	the	next	byvar	column	value.	This	is	because	there	is	no	way	to	tell	that

we	are	on	the	last	row	for	any	byvar	value	until	we	get	to	the	next

byvar	value.	That	is	not	a	problem	because	we	append	the	summary	to

rowlist	right	before	we	reset	the	value	to	0.	This	also	means	that	we

need	to	do	something	special	to	output	the	totals	for	the	last	byvar	value

since	no	next	byvar	value	is	reached.	We	do	this	with	a	final	append	after
the	loop	is	complete.

In	step	5,	we	call	the	adjmeans	function	we	defined	in	step	2.	Since	we

do	not	set	a	value	for	the	changeexclude	parameter,	the	function	will
include	all	values	in	the	aggregation.	This	will	give	us	the	same	results	as	we

would	get	using	groupby	with	an	aggregation	function.	When	we	pass	an

argument	to	changeexclude,	however,	we	determine	which	rows	to
exclude	from	the	aggregation.	In	step	6,	the	fifth	argument	in	the	call	to
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adjmeans	indicates	that	we	should	exclude	new	cases	values	that	are
more	than	150	cases	higher	or	lower	than	the	value	for	the	previous	day.

The	function	in	step	9	works	well	when	the	data	files	to	be	concatenated	have
the	same,	or	nearly	the	same,	structure.	We	print	an	alert	when	the	column	names

are	different,	as	step	10	shows.	The	latabs	column	is	not	in	the	Oman	file.

This	means	that	in	the	concatenated	file,	latabs	will	be	missing	for	all	of
the	rows	for	Oman.

There's	more...
The	adjmeans	function	does	a	fairly	straightforward	check	of	each	new
value	to	be	aggregated	before	including	it	in	the	total.	But	we	could	imagine
much	more	complicated	checks.	We	could	even	have	made	a	call	to	another

function	within	the	adjmeans	function	where	we	are	deciding	whether	to
include	the	row.

See	also
We	examine	combining	DataFrames	vertically	and	horizontally	in	Chapter	8,
Addressing	Data	Issues	when	Combining	DataFrames.

Classes 	 that 	contain	 the	 logic
for 	updat ing	ser ies 	values
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We	sometimes	work	with	a	particular	dataset	for	an	extended	period	of	time,
occasionally	years.	The	data	might	be	updated	regularly,	for	a	new	month	or
year,	or	with	additional	individuals,	but	the	data	structure	might	be	fairly	stable.
If	that	dataset	also	has	a	large	number	of	columns,	we	might	be	able	to	improve
the	reliability	and	readability	of	our	code	by	implementing	classes.

When	we	create	classes,	we	define	the	attributes	and	methods	of	objects.	When	I
use	classes	for	my	data	cleaning	work,	I	tend	to	conceptualize	a	class	as
representing	my	unit	of	analysis.	So,	if	my	unit	of	analysis	is	a	student,	then	I
have	a	student	class.	Each	instance	of	a	student	created	by	that	class	might	have
birth	date	and	gender	attributes	and	a	course	registration	method.	I	might	also
create	a	subclass	for	alumni	that	inherits	methods	and	attributes	from	the	student
class.

Data	cleaning	for	the	NLS	DataFrame	could	be	implemented	nicely	with	classes.
The	dataset	has	been	stable	for	20	years,	both	in	terms	of	the	variables	and	the
allowable	values	for	each	variable.	We	explore	how	to	create	a	respondent	class
for	NLS	survey	responses	in	this	recipe.

Getting	ready
You	will	need	to	create	a	helperfunctions	subfolder	in	your
current	directory	to	run	the	code	in	this	recipe.	We	will	save	the	file

(respondent.py)	for	our	new	class	in	that	subfolder.

How	to	do	it...
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We	will	define	a	respondent	class	to	create	several	new	series	based	on	the	NLS
data:

1.	 Import	the	pandas,	os,	sys,	and	pprint	libraries.

We	store	this	code	in	a	different	file	than	we	will	save	the	respondent	class.

Let's	call	this	file	class_cleaning.py.	We	will	instantiate
respondent	objects	from	this	file:

>>>	import	pandas	as	pd

>>>	import	os

>>>	import	sys

>>>	import	pprint

2.	 Create	a	respondent	class	and	save	it	to	respondent.py	in	the

helperfunctions	subfolder.

When	we	call	our	class	(instantiate	a	class	object),	the	__init__
method	runs	automatically.	(There	is	a	double	underscore	before	and	after

init).	The	__init__	method	has	self	as	the	first	parameter,	as

any	instance	method	does.	The	__init__	method	of	this	class	also	has

a	respdict	parameter,	which	expects	a	dictionary	of	values	from	the
NLS	data.	In	later	steps,	we	will	instantiate	a	respondent	object	once	for	each
row	of	data	in	the	NLS	DataFrame.

The	__init__	method	assigns	the	passed	respdict	value	to

self.respdict	to	create	an	instance	variable	that	we	can
reference	in	other	methods.	Finally,	we	increment	a	counter,

respondentcnt.	We	will	be	able	to	use	this	later	to	confirm	the

number	of	instances	of	respondent	that	we	created.	We	also	import
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the	math	and	datetime	modules	because	we	will	need	them	later.
(Notice	that	class	names	are	capitalized	by	convention).

>>>	import	math

>>>	import	datetime	as	dt

>>>

>>>	class	Respondent:

...			respondentcnt	=	0

...			def	__init__(self,	respdict):

...					self.respdict	=	respdict

...					Respondent.respondentcnt+=1

3.	 Add	a	method	for	counting	the	number	of	children.

This	is	a	very	simple	method	that	just	adds	the	number	of	children	living	with
the	respondent	to	the	number	of	children	not	living	with	the	respondent,	to	get

the	total	number	of	children.	It	uses	the	childathome	and

childnotathome	key	values	in	the	self.respdict
dictionary:

>>>	def	childnum(self):

...			return

self.respdict['childathome']	+

self.respdict['childnotathome']

4.	 Add	a	method	for	calculating	average	weeks	worked	across	the	20	years	of	the
survey.
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Use	dictionary	comprehension	to	create	a	dictionary	(workdict)	of	the
weeks	worked	keys	that	do	not	have	missing	values.	Sum	the	values	in

workdict	and	divide	that	by	the	length	of	workdict:

>>>	def	avgweeksworked(self):

...			workdict	=	{k:	v	for	k,	v	in

self.respdict.items()	\

...					if

k.startswith('weeksworked')	and

not	math.isnan(v)}

...			nweeks	=	len(workdict)

...			if	(nweeks>0):

...					avgww	=

sum(workdict.values())/nweeks

...			else:

...					avgww	=	0

...			return	avgww

5.	 Add	a	method	for	calculating	age	as	of	a	given	date.

This	method	takes	a	date	string	(bydatestring)	to	use	for	the	end

date	of	the	age	calculation.	We	use	the	datetime	module	to	convert	the

date	string	to	a	datetime	object,	bydate.	We	subtract	the

birth	year	value	in	self.respdict	from	the	year	of	bydate,
subtracting	1	from	that	calculation	if	the	birth	date	has	not	happened	yet	that
year.	(We	only	have	birth	month	and	birth	year	in	the	NLS	data,	so	we	choose
15	as	a	midpoint).
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>>>	def	ageby(self,	bydatestring):

...			bydate	=

dt.datetime.strptime(bydatestring,

'%Y%m%d')

...			birthyear	=

self.respdict['birthyear']

...			birthmonth	=

self.respdict['birthmonth']

...			age	=	bydate.year	-	birthyear

...			if	(bydate.month<birthmonth	or

(bydate.month==birthmonth	\

...							and	bydate.day<15)):

...					age	=	age	-1

...			return	age

6.	 Add	a	method	to	create	a	flag	if	the	respondent	ever	enrolled	at	a	4-year
college.

Use	dictionary	comprehension	to	check	whether	any	college	enrollment
values	are	at	a	4-year	college:

>>>	def	baenrollment(self):

...			colenrdict	=	{k:	v	for	k,	v	in

self.respdict.items()	\

...					if	k.startswith('colenr')	and

v=="3.	4-year	college"}

...			if	(len(colenrdict)>0):

Telegram Channel @nettrain



...					return	"Y"

...			else:

...					return	"N"

7.	 Import	the	respondent	class.

Now	we	are	ready	to	instantiate	some	Respondent	objects!	Let's	do

that	from	the	class_cleaning.py	file	we	started	in	step	1.	We
start	by	importing	the	respondent	class.	(This	step	assumes	that

respondent.py	is	in	the	helperfunctions
subfolder).

>>>	sys.path.append(os.getcwd()	+

"/helperfunctions")

>>>	import	respondent	as	rp

8.	 Load	the	NLS	data	and	create	a	list	of	dictionaries.

Use	the	to_dict	method	to	create	the	list	of	dictionaries

(nls97list).	Each	row	from	the	DataFrame	will	be	a	dictionary	with
column	names	as	keys.	Show	part	of	the	first	dictionary	(the	first	row):

>>>	nls97	=

pd.read_csv("data/nls97f.csv")

>>>	nls97list	=

nls97.to_dict('records')

>>>	nls97.shape

(8984,	89)

>>>	len(nls97list)
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8984

>>>	pprint.pprint(nls97list[0:1])

[{'birthmonth':	5,

		'birthyear':	1980,

		'childathome':	4.0,

		'childnotathome':	0.0,

		'colenrfeb00':	'1.	Not	enrolled',

		'colenrfeb01':	'1.	Not	enrolled',

		...

		'weeksworked16':	48.0,

		'weeksworked17':	48.0}]

9.	 Loop	through	the	list,	creating	a	respondent	instance	each	time.

We	pass	each	dictionary	to	the	respondent	class,

rp.Respondent(respdict).	Once	we	have	created	a

respondent	object	(resp),	we	can	then	use	all	of	the	instance	methods	to
get	the	values	we	need.	We	create	a	new	dictionary	with	those	values	returned
by	instance	methods.	We	then	append	that	dictionary	to

analysisdict:

>>>	analysislist	=	[]

>>>

>>>	for	respdict	in	nls97list:

...			resp	=	rp.Respondent(respdict)
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...			newdict	=

dict(originalid=respdict['originalid'],

...					childnum=resp.childnum(),

...					avgweeksworked=resp.avgweeksworked(),

...					age=resp.ageby('20201015'),

...					baenrollment=resp.baenrollment())

...			analysislist.append(newdict)

10.	 Pass	the	dictionary	to	the	pandas	DataFrame	method.

First,	check	the	number	of	items	in	analysislist	and	the	number
of	instances	created:

>>>	len(analysislist)

8984

>>>	resp.respondentcnt

8984

>>>	pprint.pprint(analysislist[0:2])

[{'age':	40,

		'avgweeksworked':

49.05555555555556,

		'baenrollment':	'Y',

		'childnum':	4.0,

		'originalid':	8245},

{'age':	37,
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		'avgweeksworked':

49.388888888888886,

		'baenrollment':	'N',

		'childnum':	2.0,

		'originalid':	3962}]

>>>	analysis	=

pd.DataFrame(analysislist)

>>>	analysis.head(2)

			originalid		childnum		avgweeksworked		age

baenrollment

0								8245							4.0							49.055556			40												Y

1								3962							2.0							49.388889			37												N

These	steps	demonstrated	how	to	create	a	class	in	Python,	how	to	pass	data	to	a
class,	how	to	create	an	instance	of	a	class,	and	how	to	call	the	methods	of	the
class	to	update	variable	values.

How	it	works...
The	key	work	in	this	recipe	is	done	in	step	2.	It	creates	the	respondent	class	and
sets	us	up	well	for	the	remaining	steps.	We	pass	a	dictionary	with	the	values	for

each	row	to	the	class's	__init__	method.	The	__init__	method
assigns	that	dictionary	to	an	instance	variable	that	will	be	available	to	all	of	the

class's	methods	(self.respdict	=	respdict).
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Steps	3	through	6	use	that	dictionary	to	calculate	number	of	children,	average
weeks	worked	per	year,	age,	and	college	enrollment.	Steps	4	and	6	show	how
helpful	dictionary	comprehensions	are	when	we	need	to	test	for	the	same	value
over	many	keys.	The	dictionary	comprehensions	select	the	relevant	keys,

weeksworked##,	colenroct##,	and	colenrfeb##,
and	allow	us	to	inspect	the	values	of	those	keys.	This	is	incredibly	useful	when
we	have	data	that	is	untidy	in	this	way,	as	survey	data	often	is.

In	step	8,	we	create	a	list	of	dictionaries	with	the	to_dict	method.	It	has
the	expected	number	of	list	items,	8,984,	the	same	as	the	number	of	rows	in	the

DataFrame.	We	use	pprint	to	show	what	the	dictionary	looks	like	for	the
first	list	item.	The	dictionary	has	keys	for	the	column	names	and	values	for	the
column	values.

We	iterate	over	the	list	in	step	9,	creating	a	new	respondent	object	and	passing
the	list	item.	We	call	the	methods	to	get	the	values	we	want,	except	for

originalid,	which	we	can	pull	directly	from	the	dictionary.	We	create

a	dictionary	(newdict)	with	those	values,	which	we	append	to	a	list

(analysislist).

In	step	10,	we	create	a	pandas	DataFrame	from	the	list

(analysislist)	we	created	in	step	9.	We	do	this	by	passing	the	list	to

the	pandas	DataFrame	method.

There's	more...
We	pass	dictionaries	to	the	class	rather	than	data	rows,	which	is	also	a
possibility.	We	do	this	because	navigating	a	NumPy	array	is	more	efficient	than
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looping	over	a	DataFrame	with	itertuples	or	iterrows.	We	do
not	lose	much	of	the	functionality	needed	for	our	class	when	we	work	with
dictionaries	rather	than	DataFrame	rows.	We	are	still	able	to	use	functions	such

as	sum	and	mean	and	count	the	number	of	values	meeting	certain	criteria.

It	is	hard	to	avoid	having	to	iterate	over	data	with	this	conceptualization	of	a
respondent	class.	This	respondent	class	is	consistent	with	our	understanding	of
the	unit	of	analysis,	the	survey	respondent.	That	is	also,	unsurprisingly,	how	the
data	comes	to	us.	But	iterating	over	data	one	row	at	a	time	is	resource-intensive,
even	with	more	efficient	NumPy	arrays.

I	would	argue,	however,	that	you	gain	more	than	you	lose	by	constructing	a	class
like	this	one	when	working	with	data	with	many	columns	and	with	a	structure
that	does	not	change	much	over	time.	The	most	important	advantage	is	that	it
matches	our	intuition	about	the	data	and	focuses	our	work	on	understanding	the
data	for	each	respondent.	I	also	think	we	find	that	when	we	construct	the	class
well	we	do	far	fewer	passes	through	the	data	than	we	otherwise	might.

See	also
We	examine	navigating	over	DataFrame	rows	and	NumPy	arrays	in	Chapter	7,
Fixing	Messy	Data	when	Aggregating.

This	was	a	very	quick	introduction	to	working	with	classes	in	Python.	If	you
would	like	to	learn	more	about	object-oriented	programming	in	Python,	I	would
recommend	Python	3	Object-Oriented	Programming,	Third	Edition	by	Dusty
Phillips.
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Classes 	 that 	handle 	non-tabular
data 	s t ructures
Data	scientists	increasingly	receive	non-tabular	data,	often	in	the	form	of	JSON
or	XML	files.	The	flexibility	of	JSON	and	XML	allows	organizations	to	capture
complicated	relationships	between	data	items	in	one	file.	A	one-to-many
relationship	stored	in	two	tables	in	an	enterprise	data	system	can	be	represented
well	in	JSON	by	a	parent	node	for	the	one	side	and	child	nodes	for	data	on	the
many	side.

When	we	receive	JSON	data	we	often	start	by	trying	to	normalize	it.	Indeed,	we
do	that	in	a	couple	of	recipes	in	this	book.	We	try	to	recover	the	one-to-one	and
one-to-many	relationships	in	the	data	obfuscated	by	the	flexibility	of	JSON.	But
there	is	another	way	to	work	with	such	data,	one	that	has	many	advantages.

Instead	of	normalizing	the	data,	we	can	create	a	class	that	instantiates	objects	at
the	appropriate	unit	of	analysis,	and	use	the	methods	of	the	class	to	navigate	the
many	side	of	one-to-many	relationships.	For	example,	if	we	get	a	JSON	file	that
has	student	nodes	and	then	multiple	child	nodes	for	each	course	taken	by	a
student,	we	would	usually	normalize	that	data	by	creating	a	student	file	and	a
course	file,	with	student	ID	as	the	merge-by	column	on	both	files.	An	alternative,
which	we	explore	in	this	recipe,	would	be	to	leave	the	data	as	it	is,	create	a
student	class,	and	create	methods	that	do	calculations	on	the	child	nodes,	such	as
calculating	total	credits	taken.

Let's	try	that	with	this	recipe,	using	data	from	the	Cleveland	Museum	of	Art,
which	has	collection	items,	one	or	more	nodes	for	media	citations	for	each	item,
and	one	or	more	nodes	for	each	creator	of	the	item.
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Getting	ready
This	recipe	assumes	you	have	the	requests	and	pprint	libraries.	If

they	are	not	installed,	you	can	install	them	with	pip.	From	the	Terminal,	or

PowerShell	(in	Windows),	enter	pip	install	requests	and

pip	install	pprint.

I	show	here	the	structure	of	the	JSON	file	that	is	created	when	using	the

collections	API	of	the	Cleveland	Museum	of	Art.	(I	have
abbreviated	the	JSON	file	to	save	space.)

{

"id":	165157,

"title":	"Fulton	and	Nostrand",

"creation_date":	"1958",

"citations":	[

		{

			"citation":	"Annual	Exhibition:

Sculpture,	Paintings,

Watercolors,	Drawings,		

			"page_number":	"Unpaginated,	[8],

[12]",

			"url":	null

			},

		{
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			"citation":	"\"Moscow	to	See	Modern

U.S.	Art,\"<em>	New	York

Times</em>	(May	31,	1959).",			

			"page_number":	"P.	60",

			"url":	null

		}]

"creators":	[

						{

					"description":	"Jacob	Lawrence

(American,	1917-2000)",

					"role":	"artist",

					"birth_year":	"1917",

					"death_year":	"2000"

					}

		]

}

NOTE
The	Cleveland	Museum	of	Art	provides	an	API	for	public	access	to	this	data:
https://openaccess-api.clevelandart.org/.	Much	more	than	the	citations	and
creators	data	used	in	this	recipe	is	available	with	the	API.

How	to	do	it...
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We	create	a	collection	item	class	that	summarizes	the	data	we	need	on	creators
and	media	citations:

1.	 Import	the	pandas,	json,	pprint,	and	requests
libraries.

Let's	first	create	a	file	that	we	will	use	to	instantiate	collection	item	objects

and	call	it	class_cleaning_json.py:

>>>	import	pandas	as	pd

>>>	import	json

>>>	import	pprint

>>>	import	requests

2.	 Create	a	Collectionitem	class.

We	pass	a	dictionary	for	each	collection	item	to	the	__init__	method
of	the	class,	which	runs	automatically	when	an	instance	of	the	class	is	created.
We	assign	the	collection	item	dictionary	to	an	instance	variable.	Save	the	class

as	collectionitem.py	in	the	helperfunctions
folder:

>>>	class	Collectionitem:

...			collectionitemcnt	=	0

...			def	__init__(self,	colldict):

...					self.colldict	=	colldict

...					Collectionitem.collectionitemcnt+=1

3.	 Create	a	method	to	get	the	birth	year	of	the	first	creator	for	each	collection
item.

Telegram Channel @nettrain



Remember	that	collection	items	can	have	multiple	creators.	This	means	that

the	creators	key	has	one	or	more	list	items	as	values,	and	these	items
are	themselves	dictionaries.	To	get	the	birth	year	of	the	first	creator,	then,	we

need	['creators'][0]['birth_year'].	We	also
need	to	allow	for	the	birth	year	key	to	be	missing,	so	we	test	for	that	first:

>>>	def	birthyearcreator1(self):

...			if	("birth_year"	in

self.colldict['creators'][0]):

...					byear	=

self.colldict['creators'][0]

['birth_year']

...			else:

...					byear	=	"Unknown"

...			return	byear

4.	 Create	a	method	to	get	the	birth	years	for	all	creators.

Use	list	comprehension	to	loop	through	all	the	creators	items.	This	will	return
the	birth	years	as	a	list:

>>>	def	birthyearsall(self):

...			byearlist	=

[item.get('birth_year')	for

item	in	\

...					self.colldict['creators']]

...			return	byearlist

5.	 Create	a	method	to	count	the	number	of	creators:
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>>>	def	ncreators(self):

...			return

len(self.colldict['creators'])

6.	 Create	a	method	to	count	the	number	of	media	citations:

>>>	def	ncitations(self):

...			return

len(self.colldict['citations'])

7.	 Import	the	collectionitem	module.

We	do	this	from	the	class_cleaning_json.py	file	we
created	in	step	1:

>>>	sys.path.append(os.getcwd()	+

"/helperfunctions")

>>>	import	collectionitem	as	ci

8.	 Load	the	art	museum's	collections	data.

This	returns	a	list	of	dictionaries:

>>>	response	=

requests.get("https://openaccess-

api.clevelandart.org/api/artworks/?

african_american_artists")

>>>	camcollections	=

json.loads(response.text)

>>>	camcollections	=

camcollections['data']
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9.	 Loop	through	the	camcollections	list.

Create	a	collection	item	instance	for	each	item	in

camcollections.	Pass	each	item,	which	is	a	dictionary	of
collections,	creators,	and	citation	keys,	to	the	class.	Call	the	methods	we	have
just	created	and	assign	the	values	they	return	to	a	new	dictionary

(newdict).	Append	that	dictionary	to	a	list	(analysislist).
(Some	of	the	values	can	be	pulled	directly	from	the	dictionary,	such	as	with

title=colldict['title'],	since	we	do	not	need	to
change	the	value	in	any	way).

>>>	analysislist	=	[]

>>>

>>>	for	colldict	in	camcollections:

...			coll	=

ci.Collectionitem(colldict)

...			newdict	=

dict(id=colldict['id'],

...					title=colldict['title'],

...					type=colldict['type'],

...					creationdate=colldict['creation_date'],

...					ncreators=coll.ncreators(),

...					ncitations=coll.ncitations(),

...					birthyearsall=coll.birthyearsall(),

...					birthyear=coll.birthyearcreator1())

...			analysislist.append(newdict)
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10.	 Create	an	analysis	DataFrame	with	the	new	list	of	dictionaries.

Confirm	that	we	are	getting	the	correct	counts,	and	print	the	dictionary	for	the
first	item:

>>>	len(camcollections)

789

>>>	len(analysislist)

789

>>>	pprint.pprint(analysislist[0:1])

[{'birthyear':	'1917',

		'birthyearsall':	['1917'],

		'creationdate':	'1958',

		'id':	165157,

		'ncitations':	24,

		'ncreators':	1,

		'title':	'Fulton	and	Nostrand',

		'type':	'Painting'}]

>>>	analysis	=

pd.DataFrame(analysislist)

>>>

analysis.birthyearsall.value_counts().head()

[1951]										262

[1953]										118

[1961,	None]				105
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[1886]											34

[1935]											17

Name:	birthyearsall,	dtype:	int64

>>>	analysis.head(2)

							id																title		...

birthyearsall	birthyear

0		165157		Fulton	and

Nostrand		...								[1917]						1917

1		163769								Go	Down

Death		...								[1899]						1899

[2	rows	x	8	columns]

These	steps	give	a	sense	of	how	we	can	use	classes	to	handle	non-tabular	data.

How	it	works...
This	recipe	demonstrated	how	to	work	directly	with	a	JSON	file,	or	any	file	with
implied	one-to-many	or	many-to-many	relationships.	We	created	a	class	at	the
unit	of	analysis	(a	collection	item,	in	this	case)	and	then	created	methods	to
summarize	multiple	nodes	of	data	for	each	collection	item.

The	methods	we	created	in	steps	3	through	6	are	satisfyingly	straightforward.
When	we	first	look	at	the	structure	of	the	data,	displayed	in	the	Getting	ready
section	of	this	recipe,	it	is	hard	not	to	feel	that	it	will	be	really	difficult	to	clean.
It	looks	like	anything	goes.	But	it	turns	out	to	have	a	fairly	reliable	structure.	We

can	count	on	one	or	more	child	nodes	for	creators	and
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citations.	Each	creators	and	citations	node	also	has
child	nodes,	which	are	key	and	value	pairs.	These	keys	are	not	always	present,
so	we	need	to	first	check	to	see	whether	they	are	present	before	trying	to	grab
their	values.	We	do	this	in	step	3.

There's	more...
I	go	into	some	detail	about	the	advantages	of	working	directly	with	JSON	files	in
Chapter	2,	Anticipating	Data	Cleaning	Issues	when	Importing	HTML	and	JSON
into	pandas.	I	think	the	museum's	collections	data	is	a	good	example	of	why	we
might	want	to	stick	with	JSON	if	we	can.	The	structure	of	the	data	actually
makes	sense,	even	if	it	is	in	a	very	different	form.	There	is	always	a	danger	when
we	try	to	normalize	it	that	we	will	miss	some	aspects	of	its	structure.
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Other 	Books	You	May	Enjoy
If	you	enjoyed	this	book,	you	may	be	interested	in	these	other	books	by	Packt:

Practical	Data	Analysis	Using	Jupyter	Notebook

Marc	Wintjen

ISBN:	978-1-83882-603-1

Understand	the	importance	of	data	literacy	and	how	to	communicate
effectively	using	data

Find	out	how	to	use	Python	packages	such	as	NumPy,	pandas,	Matplotlib,	and
the	Natural	Language	Toolkit	(NLTK)	for	data	analysis

Wrangle	data	and	create	DataFrames	using	pandas

Produce	charts	and	data	visualizations	using	time-series	datasets
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https://www.packtpub.com/product/practical-data-analysis-using-jupyter-notebook/9781838826031


Discover	relationships	and	how	to	join	data	together	using	SQL

Use	NLP	techniques	to	work	with	unstructured	data	to	create	sentiment
analysis	models

Discover	patterns	in	real-world	datasets	that	provide	accurate	insights

Hands-On	Exploratory	Data	Analysis	with	Python

Suresh	Kumar	Mukhiya,	Usman	Ahmed

ISBN:	978-1-78953-725-3

Import,	clean,	and	explore	data	to	perform	preliminary	analysis	using
powerful	Python	packages

Identify	and	transform	erroneous	data	using	different	data	wrangling
techniques

Explore	the	use	of	multiple	regression	to	describe	non-linear	relationships

Discover	hypothesis	testing	and	explore	techniques	of	time-series	analysis
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https://www.packtpub.com/product/hands-on-exploratory-data-analysis-with-python/9781789537253


Understand	and	interpret	results	obtained	from	graphical	analysis

Build,	train,	and	optimize	predictive	models	to	estimate	results

Perform	complex	EDA	techniques	on	open	source	datasets

Leave	a 	 review	- 	 le t 	other
readers 	know	what 	you	 think
Please	share	your	thoughts	on	this	book	with	others	by	leaving	a	review	on	the
site	that	you	bought	it	from.	If	you	purchased	the	book	from	Amazon,	please
leave	us	an	honest	review	on	this	book's	Amazon	page.	This	is	vital	so	that	other
potential	readers	can	see	and	use	your	unbiased	opinion	to	make	purchasing
decisions,	we	can	understand	what	our	customers	think	about	our	products,	and
our	authors	can	see	your	feedback	on	the	title	that	they	have	worked	with	Packt
to	create.	It	will	only	take	a	few	minutes	of	your	time,	but	is	valuable	to	other
potential	customers,	our	authors,	and	Packt.	Thank	you!
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